Semiconducting nanonetwork could form the backbone of transparent, flexible electronics

From phys.org:

Researchers may have found a “sweet spot” for organic electronics by fabricating a new 2D semiconducting polymer-blended nanonetwork material that simultaneously achieves excellent charge mobility, high flexibility, and nearly 100% optical transparency—a combination of properties that has so far been elusive for semiconducting materials. According to the researchers, the nanonetwork is the first truly colorless, bendable semiconducting material, as demonstrated by the fabrication of field-effect transistors with integrated LEDs.

The researchers, led by Kwanghee Lee, a professor at the Gwangju Institute of Science and Technology in South Korea, have published a paper on the new material in the Proceedings of the National Academy of Sciences.

“So far, there has been no semiconducting material that simultaneously achieves excellent optical transparency, high charge-carrier mobility, and real flexibility,” coauthor Kilho Yu at the Gwangju Institute of Science and Technology told Phys.org. “Metal oxides, such as ZnO and IGZO, have excellent transparency and high mobility, but they are brittle and show poor mobility if not treated with high-temperature (>200 °C) processes, which are not desirable for fabrication on flexible substrates. General semiconducting polymers are flexible, but show poor mobility without complex processes and are not very transparent because of their high optical absorption coefficient.”

Read more
timthumb.php_
Image Credit:     Yu et al. ©2016 PNAS

Recent News

NanoApps Medical Near-Term Projects

NanoApps Medical is investigating the possibility that superparamagnetic nanoparticles (SPIONs) and other classes of nanoparticles (e.g., gold coated nanoshells) might have the capacity to target cancerous tumors, metastasizing cancer [...]

 

2018-03-22T14:35:26+00:00

Leave A Comment