A recent study published in Nature Communications presents a new microrobotic platform designed to improve the precision and versatility of nanoparticle manipulation using light. Led by Jin Qin and colleagues, the research addresses limitations in traditional optical methods and introduces a microrobot powered by plasmonic nanomotors.
Background: Limitations of Traditional Techniques
Manipulating nanoparticles at the nanoscale is a persistent challenge. Conventional optical tweezers work well for microscale objects but face limitations with nanoparticles due to diffraction limits and limited control over particle orientation. Efforts to induce particle rotation or enhance control often involve trade-offs, such as bulky attachments or complex multi-trap configurations, which restrict flexibility and accuracy.
To overcome these constraints, the authors developed a light-driven microrobotic system—essentially a microdrone that can move with multiple degrees of freedom and manipulate nanoparticles with enhanced precision. This platform aims to provide greater agility and fine-tuned control for applications requiring nanoscale manipulation.
The Current Study
The microrobots were constructed using a rigid, transparent disk-shaped body made from hydrogen silsesquioxane (HSQ), measuring approximately 3.5 μm in diameter and 150 nm in height, with a total weight of around 3.8 pg. Several plasmonic antennas were integrated into the structure to serve as independent motors.
At the core of the manipulation system is a plasmonic nano-tweezer—a gold cross-antenna designed and fabricated using focused helium ion beam milling. This structure generates a localized near-field hot spot that enables the trapping of nanoparticles. The tweezer was embedded directly onto the microrobot in a single fabrication step, with a 1 μm gap maintained between the tweezer and motors to avoid interference.
For experimental validation, a static tweezer setup was used. It was mounted on a coverslip inside a water cell containing nanodiamonds (average diameter of 70 nm). A 980 nm infrared laser was used to create an optical trap, while a 532 nm green laser excited the nanodiamonds’ color centers for fluorescence-based tracking.
The microrobots were released into solution by etching away the indium tin oxide substrate using hydrochloric acid. Once free-floating in water, the infrared laser induced a gentle push from the substrate, enabling the trapping of nanodiamonds without unwanted adhesion, which can result from surface charge effects.
All trapping and manipulation events were recorded using a high-numerical-aperture oil-immersion objective for detailed imaging of microrobot behavior.
Results and Discussion: Performance of the Microrobot Platform
The researchers successfully demonstrated the microrobot’s ability to trap, transport, and release nanoparticles with high precision. Experimental sequences showed the microrobots performing both spiral and linear motion patterns while securely holding nanodiamonds.
Stable trapping was achieved through the interaction of optical gradient forces and plasmonically enhanced fields, confirming the effectiveness of the integrated tweezer design.
The system also exhibited reliable control over dynamic sequences, something not possible with many existing manipulation tools. The applications discussed include targeted drug delivery, quantum sensing, and other nanotech workflows that require cargo transport at the nanoscale.
The authors do acknowledge some limitations. For instance, heat-induced thermophoresis can reduce trapping efficiency, and particles may detach during rapid movement. However, they suggest that implementing an active feedback system could help counteract Brownian motion and improve positional accuracy during manipulation.
With further refinement, this platform could support a wider range of applications in areas like targeted cargo delivery, quantum sensing, and precision nanoscale engineering.
Journal Reference
Qin J., et al. (2025). Light-driven plasmonic microrobot for nanoparticle manipulation. Nature Communications 16, 2570. DOI: 10.1038/s41467-025-57871-x, https://www.nature.com/articles/s41467-025-57871-x

News
Why ‘Peniaphobia’ Is Exploding Among Young People (And Why We Should Be Concerned)
An insidious illness is taking hold among a growing proportion of young people. Little known to the general public, peniaphobia—the fear of becoming poor—is gaining ground among teens and young adults. Discover the causes [...]
Team finds flawed data in recent study relevant to coronavirus antiviral development
The COVID pandemic illustrated how urgently we need antiviral medications capable of treating coronavirus infections. To aid this effort, researchers quickly homed in on part of SARS-CoV-2's molecular structure known as the NiRAN domain—an [...]
Drug-Coated Neural Implants Reduce Immune Rejection
Summary: A new study shows that coating neural prosthetic implants with the anti-inflammatory drug dexamethasone helps reduce the body’s immune response and scar tissue formation. This strategy enhances the long-term performance and stability of electrodes [...]
Scientists discover cancer-fighting bacteria that ‘soak up’ forever chemicals in the body
A family of healthy bacteria may help 'soak up' toxic forever chemicals in the body, warding off their cancerous effects. Forever chemicals, also known as PFAS (per- and polyfluoroalkyl substances), are toxic chemicals that [...]
Johns Hopkins Researchers Uncover a New Way To Kill Cancer Cells
A new study reveals that blocking ribosomal RNA production rewires cancer cell behavior and could help treat genetically unstable tumors. Researchers at the Johns Hopkins Kimmel Cancer Center and the Department of Radiation Oncology and Molecular [...]
AI matches doctors in mapping lung tumors for radiation therapy
In radiation therapy, precision can save lives. Oncologists must carefully map the size and location of a tumor before delivering high-dose radiation to destroy cancer cells while sparing healthy tissue. But this process, called [...]
Scientists Finally “See” Key Protein That Controls Inflammation
Researchers used advanced microscopy to uncover important protein structures. For the first time, two important protein structures in the human body are being visualized, thanks in part to cutting-edge technology at the University of [...]
AI tool detects 9 types of dementia from a single brain scan
Mayo Clinic researchers have developed a new artificial intelligence (AI) tool that helps clinicians identify brain activity patterns linked to nine types of dementia, including Alzheimer's disease, using a single, widely available scan—a transformative [...]
Is plastic packaging putting more than just food on your plate?
New research reveals that common food packaging and utensils can shed microscopic plastics into our food, prompting urgent calls for stricter testing and updated regulations to protect public health. Beyond microplastics: The analysis intentionally [...]
Aging Spreads Through the Bloodstream
Summary: New research reveals that aging isn’t just a local cellular process—it can spread throughout the body via the bloodstream. A redox-sensitive protein called ReHMGB1, secreted by senescent cells, was found to trigger aging features [...]
AI and nanomedicine find rare biomarkers for prostrate cancer and atherosclerosis
Imagine a stadium packed with 75,000 fans, all wearing green and white jerseys—except one person in a solid green shirt. Finding that person would be tough. That's how hard it is for scientists to [...]
Are Pesticides Breeding the Next Pandemic? Experts Warn of Fungal Superbugs
Fungicides used in agriculture have been linked to an increase in resistance to antifungal drugs in both humans and animals. Fungal infections are on the rise, and two UC Davis infectious disease experts, Dr. George Thompson [...]
Scientists Crack the 500-Million-Year-Old Code That Controls Your Immune System
A collaborative team from Penn Medicine and Penn Engineering has uncovered the mathematical principles behind a 500-million-year-old protein network that determines whether foreign materials are recognized as friend or foe. How does your body [...]
Team discovers how tiny parts of cells stay organized, new insights for blocking cancer growth
A team of international researchers led by scientists at City of Hope provides the most thorough account yet of an elusive target for cancer treatment. Published in Science Advances, the study suggests a complex signaling [...]
Nanomaterials in Ophthalmology: A Review
Eye diseases are becoming more common. In 2020, over 250 million people had mild vision problems, and 295 million experienced moderate to severe ocular conditions. In response, researchers are turning to nanotechnology and nanomaterials—tools that are transforming [...]
Natural Plant Extract Removes up to 90% of Microplastics From Water
Researchers found that natural polymers derived from okra and fenugreek are highly effective at removing microplastics from water. The same sticky substances that make okra slimy and give fenugreek its gel-like texture could help [...]