Our DNA is constantly under threat — from cell division errors to external factors like sunlight and smoking. Fortunately, cells have intricate repair mechanisms to counteract this damage.
Scientists have uncovered a surprising role played by long non-coding RNA, particularly NEAT1, in stabilizing the genome. Their findings suggest that NEAT1, when highly methylated, helps the cell recognize and repair broken DNA strands more efficiently. This discovery could pave the way for new cancer treatments targeting tumors with high NEAT1 expression.
Genome Instability and Disease Risk
Every time a cell divides, its DNA is at risk of damage. To complete division, the cell must copy its entire genetic code — billions of letters long — which can lead to occasional errors. But cell division isn’t the only threat. Over time, exposure to factors like sunlight, alcohol, and cigarette smoke can also harm DNA, increasing the risk of cancer and other diseases.
Fortunately, cells have built-in repair systems to counteract this damage. This process, known as the DNA damage response (DDR), activates specific signaling pathways that detect and fix errors. These mechanisms help maintain genetic stability and ensure the cell’s survival.
A New Look at the DNA Damage Response
A team of scientists from Julius-Maximilians-Universität Würzburg (JMU) in Bavaria, Germany, has now taken a closer look at one of these signaling pathways. The group has identified a new mechanism of the DNA damage response that is mediated via an RNA transcript. Their results help to broaden the conceptual view on the DNA damage response and to link it more closely with RNA metabolism.
Dr. Kaspar Burger, junior research group leader at the Department of Biochemistry and Molecular Biology, was responsible for this study. The group has published the results of their investigations in the journal Genes & Development.

RNA Transcripts as Key Regulators
“In our study, we focused on so-called long non-coding RNA transcripts. Previous data suggest that some of these transcripts act as regulators of genome stability,” says Kaspar Burger, explaining the background to the work. The study focused on the nuclear enriched abundant transcript 1 — also known as NEAT1 — which is found in high concentrations in many tumor cells. NEAT1 is also known to react to DNA damage and to cellular stress. However, its exact role in the DNA damage response was previously unclear.
“Our hypothesis was that RNA metabolism involves NEAT1 in the DNA damage response in order to ensure the stability of the genome,” says Burger. To test this hypothesis, the research group experimentally investigated how NEAT1 reacts to serious damage to the genome — so-called DNA double-strand breaks — in human bone cancer cells. The result: “We were able to show that DNA double-strand breaks increase both the number of NEAT1 transcripts and the amount of N6-methyladenosine marks on NEAT1,” says the scientist.
RNA Modification and Cancer Connections
Methyladenosine marks on RNA transcripts are a topic that scientists have not been dealing with for very long. They fall into the area of epitranscriptomics — the field of biology that deals with the question of how RNA modifications are involved in the regulation of gene expression. Methyl groups play a key role in this. It is known, for example, that RNA modifications are often misplaced in cancer cells.
NEAT1’s Surprising Role in DNA Repair
The experiments conducted by Kaspar Burger and his team show that the frequent occurrence of DNA double-strand breaks causes excessive methylation of NEAT1, which leads to changes in the NEAT1 secondary structure. As a result, highly methylated NEAT1 accumulates at some of these lesions to drive the recognition of broken DNA. In turn, experimentally induced suppression of NEAT1 levels delayed the DNA damage response, resulting in increased amounts of DNA damage.
NEAT1 itself does not repair DNA damage. However, as the Würzburg team discovered, it enables the controlled release and activation of an RNA-binding DNA repair factor. In this way, the cell can recognize and repair DNA damage highly efficiently.
New Avenues for Cancer Therapy
According to the scientists, knowledge about the role of NEAT1 methylation in the recognition and repair of DNA damage could open up new therapeutic options for tumors with high NEAT1 expression. However, it must first be clarified whether these results, which were obtained in simple cell systems, can also be transferred to complex tumor models.
Reference: “NEAT1 promotes genome stability via m6A methylation-dependent regulation of CHD4” by Victoria Mamontova, Barbara Trifault, Anne-Sophie Gribling-Burrer, Patrick Bohn, Lea Boten, Pit Preckwinkel, Peter Gallant, Daniel Solvie, Carsten P. Ade, Dimitrios Papadopoulos, Martin Eilers, Tony Gutschner, Redmond P. Smyth and Kaspar Burger, 1 February 2025, Genes & Development.
DOI: 10.1101/gad.351913.124
Kaspar Burger’s research was supported by the German Cancer Aid and the Mildred Scheel Early Career Center for Cancer Research (MSNZ) in Würzburg.

News
Drug-Coated Neural Implants Reduce Immune Rejection
Summary: A new study shows that coating neural prosthetic implants with the anti-inflammatory drug dexamethasone helps reduce the body’s immune response and scar tissue formation. This strategy enhances the long-term performance and stability of electrodes [...]
Scientists discover cancer-fighting bacteria that ‘soak up’ forever chemicals in the body
A family of healthy bacteria may help 'soak up' toxic forever chemicals in the body, warding off their cancerous effects. Forever chemicals, also known as PFAS (per- and polyfluoroalkyl substances), are toxic chemicals that [...]
Johns Hopkins Researchers Uncover a New Way To Kill Cancer Cells
A new study reveals that blocking ribosomal RNA production rewires cancer cell behavior and could help treat genetically unstable tumors. Researchers at the Johns Hopkins Kimmel Cancer Center and the Department of Radiation Oncology and Molecular [...]
AI matches doctors in mapping lung tumors for radiation therapy
In radiation therapy, precision can save lives. Oncologists must carefully map the size and location of a tumor before delivering high-dose radiation to destroy cancer cells while sparing healthy tissue. But this process, called [...]
Scientists Finally “See” Key Protein That Controls Inflammation
Researchers used advanced microscopy to uncover important protein structures. For the first time, two important protein structures in the human body are being visualized, thanks in part to cutting-edge technology at the University of [...]
AI tool detects 9 types of dementia from a single brain scan
Mayo Clinic researchers have developed a new artificial intelligence (AI) tool that helps clinicians identify brain activity patterns linked to nine types of dementia, including Alzheimer's disease, using a single, widely available scan—a transformative [...]
Is plastic packaging putting more than just food on your plate?
New research reveals that common food packaging and utensils can shed microscopic plastics into our food, prompting urgent calls for stricter testing and updated regulations to protect public health. Beyond microplastics: The analysis intentionally [...]
Aging Spreads Through the Bloodstream
Summary: New research reveals that aging isn’t just a local cellular process—it can spread throughout the body via the bloodstream. A redox-sensitive protein called ReHMGB1, secreted by senescent cells, was found to trigger aging features [...]
AI and nanomedicine find rare biomarkers for prostrate cancer and atherosclerosis
Imagine a stadium packed with 75,000 fans, all wearing green and white jerseys—except one person in a solid green shirt. Finding that person would be tough. That's how hard it is for scientists to [...]
Are Pesticides Breeding the Next Pandemic? Experts Warn of Fungal Superbugs
Fungicides used in agriculture have been linked to an increase in resistance to antifungal drugs in both humans and animals. Fungal infections are on the rise, and two UC Davis infectious disease experts, Dr. George Thompson [...]
Scientists Crack the 500-Million-Year-Old Code That Controls Your Immune System
A collaborative team from Penn Medicine and Penn Engineering has uncovered the mathematical principles behind a 500-million-year-old protein network that determines whether foreign materials are recognized as friend or foe. How does your body [...]
Team discovers how tiny parts of cells stay organized, new insights for blocking cancer growth
A team of international researchers led by scientists at City of Hope provides the most thorough account yet of an elusive target for cancer treatment. Published in Science Advances, the study suggests a complex signaling [...]
Nanomaterials in Ophthalmology: A Review
Eye diseases are becoming more common. In 2020, over 250 million people had mild vision problems, and 295 million experienced moderate to severe ocular conditions. In response, researchers are turning to nanotechnology and nanomaterials—tools that are transforming [...]
Natural Plant Extract Removes up to 90% of Microplastics From Water
Researchers found that natural polymers derived from okra and fenugreek are highly effective at removing microplastics from water. The same sticky substances that make okra slimy and give fenugreek its gel-like texture could help [...]
Instant coffee may damage your eyes, genetic study finds
A new genetic study shows that just one extra cup of instant coffee a day could significantly increase your risk of developing dry AMD, shedding fresh light on how our daily beverage choices may [...]
Nanoneedle patch offers painless alternative to traditional cancer biopsies
A patch containing tens of millions of microscopic nanoneedles could soon replace traditional biopsies, scientists have found. The patch offers a painless and less invasive alternative for millions of patients worldwide who undergo biopsies [...]