Researchers Develop Silicon Nanoantenna that Scatters Light in Particular Direction

From an article written bu AZoNano:

A group of physicists from the Moscow Institute of Physics and Technology (MIPT),ITMO University, and The University of Texas at Austin have created a unique nanoantenna with the ability to scatter light in a specific direction based on the intensity of incident radiation. The outcomes of this research will help develop flexible processing of optical information in telecommunication systems.

Photons, which are the electromagnetic radiation carriers, do not have electric charge or mass, indicating that in contrast to electrons (whose flow in electronic circuits can be controlled by the application of a constant electric field), light is relatively harder to control. Devices such as nanoantennas allow the propagation of electromagnetic waves to be controlled to a certain degree.

One field that requires “advanced” light manipulation is the evolution of optical computers. In such devices, instead of electrons, the information is carried by photons. The speed at which information is transmitted and processed is significantly increased when light is used instead of charged particles.

The development of such computers in reality mandates the usage of specific nanoantennas with properties that can be manipulated somehow, i.e. by varying the intensity of incident light, or, for example, by applying a constant magnetic or electric field.

In the research reported in Laser & Photonics Reviews, the scientists designed an innovative nonlinear nanoantenna with the ability to change the direction of scattering of light based on the intensity of the incident wave.

 

Read more
timthumb.php_
Image Credit:    Moscow Institute of Physics and Technology

Recent News

NanoApps Medical Near-Term Projects

NanoApps Medical is investigating the possibility that superparamagnetic nanoparticles (SPIONs) and other classes of nanoparticles (e.g., gold coated nanoshells) might have the capacity to target cancerous tumors, metastasizing cancer [...]

2018-03-22T14:35:44+00:00

Leave A Comment