A new biomarker test can detect early-stage tau protein clumping up to a decade before it appears on brain scans, improving early Alzheimer’s diagnosis. Unlike amyloid-beta, tau neurofibrillary tangles are directly linked to cognitive decline.
Years before tau tangles appear in brain scans of Alzheimer’s patients, a biomarker test developed by the University of Pittsburgh School of Medicine can detect small amounts of tau protein prone to clumping, along with its misfolded pathological forms in the brain, cerebrospinal fluid, and possibly blood, according to new research published in Nature Medicine.
This cerebrospinal fluid test correlates with cognitive decline severity, independent of factors such as brain amyloid deposition, offering a potential pathway for early diagnosis and intervention.
Since amyloid-beta abnormalities typically emerge before tau pathology in Alzheimer’s disease, most biomarker research has prioritized detecting amyloid-beta changes. However, the clumping of tau protein into well-ordered structures referred to by pathologists as “neurofibrillary tangles” is a more defining event for Alzheimer’s disease as it is more strongly associated with the cognitive changes seen in affected people.
“Our test identifies very early stages of tau tangle formation – up to a decade before any tau clumps can show up on a brain scan,” said senior author Thomas Karikari, Ph.D., assistant professor of psychiatry at Pitt. “Early detection is key to more successful therapies for Alzheimer’s disease since trials show that patients with little-to-no quantifiable insoluble tau tangles are more likely to benefit from new treatments than those with a significant degree of tau brain deposits.”
The Need for a More Reliable Tau Biomarker
Since many elderly people who have amyloid-beta plaques in their brains will never go on to develop cognitive symptoms of Alzheimer’s disease during their lifetime, the widely adopted diagnostics framework developed by the Alzheimer’s Association specifies the three neuropathological pillars necessary to diagnose the disease – combined presence of tau and amyloid-beta pathology and neurodegeneration.
In a quest for early and accessible biomarkers for Alzheimer’s disease, Karikari’s earlier work showed that a brain-specific form of tau, called BD-tau, can be measured in blood and reliably indicate the presence of Alzheimer’s disease-specific neurodegeneration. Several years prior, Karikari showed that specific forms of phosphorylated tau, p-tau181, p-tau217, and p-tau212, in the blood can predict the presence of brain amyloid-beta without the need for costly and time-consuming brain imaging.
But these tools largely detect amyloid pathology, so the issue of early detection of tau still looms large. While tau-PET remains a reliable and accurate predictor of tau burden in the brain, the test’s utility is limited by availability, low resolution, high cost, labor, and sensitivity. At present, tau-PET scans can pick up the signal from neurofibrillary tangles only when a large number are present in the brain, at which point the degree of brain pathology has become pronounced and is not easily reversible.
A Breakthrough in Early Tau Detection
In this latest research, using the tools of biochemistry and molecular biology, Karikari and team identified a core region of the tau protein that is necessary for neurofibrillary tangle formation. Detecting sites within that core region of 111 amino acids, a sequence they call tau258-368, can identify clumping-prone tau proteins and help initiate further diagnostics and early treatment. In particular, the two new phosphorylation sites, p-tau-262 and p-tau-356, can accurately inform the status of early-stage tau aggregation that, with an appropriate intervention, could potentially be reversed.
“Amyloid-beta is a kindling, and tau is a matchstick. A large percentage of people who have brain amyloid-beta deposits will never develop dementia. But once the tau tangles light up on a brain scan, it may be too late to put out the fire and their cognitive health can quickly deteriorate,” said Karikari. “Early detection of tangle-prone tau could identify the individuals who are likely to develop Alzheimer’s-associated cognitive decline and could be helped with new generation therapies.”
Reference: “Phospho-tau serine-262 and serine-356 as biomarkers of pre-tangle soluble tau assemblies in Alzheimer’s disease” by Tohidul Islam, Emily Hill, Eric E. Abrahamson, Stijn Servaes, Denis S. Smirnov, Xuemei Zeng, Anuradha Sehrawat, Yijun Chen, Przemysław R. Kac, Hlin Kvartsberg, Maria Olsson, Emma Sjons, Fernando Gonzalez-Ortiz, Joseph Therriault, Cécile Tissot, Ivana Del Popolo, Nesrine Rahmouni, Abbie Richardson, Victoria Mitchell, Henrik Zetterberg, Tharick A. Pascoal, Tammaryn Lashley, Mark J. Wall, Douglas Galasko, Pedro Rosa-Neto, Milos D. Ikonomovic, Kaj Blennow and Thomas K. Karikari, 10 February 2025, Nature Medicine.
DOI: 10.1038/s41591-024-03400-0
This study was supported by, among others, the National Institute on Aging (grants R01AG083874, U24AG082930, P30AG066468, RF1AG052525-01A1, R01AG053952, R37AG023651, RF1AG025516, R01AG073267, R01AG075336, R01AG072641, P01AG14449, and P01AG025204, among others), the Swedish Research Council (grant 2021-03244), the Alzheimer’s Association (grant AARF-21-850325), the Swedish Alzheimer Foundation, the Aina (Ann) Wallströms and Mary-Ann Sjöbloms Foundation, the Emil and Wera Cornells Foundation and a professorial endowment fund from the Department of Psychiatry, University of Pittsburgh.

News
Why ‘Peniaphobia’ Is Exploding Among Young People (And Why We Should Be Concerned)
An insidious illness is taking hold among a growing proportion of young people. Little known to the general public, peniaphobia—the fear of becoming poor—is gaining ground among teens and young adults. Discover the causes [...]
Team finds flawed data in recent study relevant to coronavirus antiviral development
The COVID pandemic illustrated how urgently we need antiviral medications capable of treating coronavirus infections. To aid this effort, researchers quickly homed in on part of SARS-CoV-2's molecular structure known as the NiRAN domain—an [...]
Drug-Coated Neural Implants Reduce Immune Rejection
Summary: A new study shows that coating neural prosthetic implants with the anti-inflammatory drug dexamethasone helps reduce the body’s immune response and scar tissue formation. This strategy enhances the long-term performance and stability of electrodes [...]
Scientists discover cancer-fighting bacteria that ‘soak up’ forever chemicals in the body
A family of healthy bacteria may help 'soak up' toxic forever chemicals in the body, warding off their cancerous effects. Forever chemicals, also known as PFAS (per- and polyfluoroalkyl substances), are toxic chemicals that [...]
Johns Hopkins Researchers Uncover a New Way To Kill Cancer Cells
A new study reveals that blocking ribosomal RNA production rewires cancer cell behavior and could help treat genetically unstable tumors. Researchers at the Johns Hopkins Kimmel Cancer Center and the Department of Radiation Oncology and Molecular [...]
AI matches doctors in mapping lung tumors for radiation therapy
In radiation therapy, precision can save lives. Oncologists must carefully map the size and location of a tumor before delivering high-dose radiation to destroy cancer cells while sparing healthy tissue. But this process, called [...]
Scientists Finally “See” Key Protein That Controls Inflammation
Researchers used advanced microscopy to uncover important protein structures. For the first time, two important protein structures in the human body are being visualized, thanks in part to cutting-edge technology at the University of [...]
AI tool detects 9 types of dementia from a single brain scan
Mayo Clinic researchers have developed a new artificial intelligence (AI) tool that helps clinicians identify brain activity patterns linked to nine types of dementia, including Alzheimer's disease, using a single, widely available scan—a transformative [...]
Is plastic packaging putting more than just food on your plate?
New research reveals that common food packaging and utensils can shed microscopic plastics into our food, prompting urgent calls for stricter testing and updated regulations to protect public health. Beyond microplastics: The analysis intentionally [...]
Aging Spreads Through the Bloodstream
Summary: New research reveals that aging isn’t just a local cellular process—it can spread throughout the body via the bloodstream. A redox-sensitive protein called ReHMGB1, secreted by senescent cells, was found to trigger aging features [...]
AI and nanomedicine find rare biomarkers for prostrate cancer and atherosclerosis
Imagine a stadium packed with 75,000 fans, all wearing green and white jerseys—except one person in a solid green shirt. Finding that person would be tough. That's how hard it is for scientists to [...]
Are Pesticides Breeding the Next Pandemic? Experts Warn of Fungal Superbugs
Fungicides used in agriculture have been linked to an increase in resistance to antifungal drugs in both humans and animals. Fungal infections are on the rise, and two UC Davis infectious disease experts, Dr. George Thompson [...]
Scientists Crack the 500-Million-Year-Old Code That Controls Your Immune System
A collaborative team from Penn Medicine and Penn Engineering has uncovered the mathematical principles behind a 500-million-year-old protein network that determines whether foreign materials are recognized as friend or foe. How does your body [...]
Team discovers how tiny parts of cells stay organized, new insights for blocking cancer growth
A team of international researchers led by scientists at City of Hope provides the most thorough account yet of an elusive target for cancer treatment. Published in Science Advances, the study suggests a complex signaling [...]
Nanomaterials in Ophthalmology: A Review
Eye diseases are becoming more common. In 2020, over 250 million people had mild vision problems, and 295 million experienced moderate to severe ocular conditions. In response, researchers are turning to nanotechnology and nanomaterials—tools that are transforming [...]
Natural Plant Extract Removes up to 90% of Microplastics From Water
Researchers found that natural polymers derived from okra and fenugreek are highly effective at removing microplastics from water. The same sticky substances that make okra slimy and give fenugreek its gel-like texture could help [...]