When a drug enters the body, it doesn’t generally target a particular part of the body. Paracetamol, for example, affects the whole body but its effects are felt at the source of pain.

Likewise, cancer drugs can be imprecise; some enter the bloodstream to treat cancer at various anatomical points in the body, some are aimed at a particular region but even then, if a tumor is besieged by a toxic drug, the healthy tissue surrounding the target can also be affected.

Many treatments for cancer – and other conditions – are becoming more targeted with the use of smart drug delivery systems, many based on nanoparticles. Researchers in Australia hope to improve cancer drug delivery with a new method to encourage polymer molecules to self-assemble into non-spherical nanoparticles.

Very little in nature is perfectly spherical. Most biological structures like cells, bacteria and viruses come in a variety of shapes including tubes, rods, and squashed spheres, or ellipsoids. But it has proved very difficult for scientists to synthesise particles that are not perfectly round.

Professor Pall Thordarson, School of Chemistry, The University of New South Wales (UNSW)


Read more at azonano.com

Image Credit:  Shutterstock

Recent News

A megalibrary of nanoparticles

Using straightforward chemistry and a mix-and-match, modular strategy, researchers have developed a simple approach that could produce over 65,000 different types of complex nanoparticles, each containing up to six [...]

Self-driving microrobots

Most synthetic materials, including those in battery electrodes, polymer membranes, and catalysts, degrade over time because they don't have internal repair mechanisms. If you could distribute autonomous microrobots within [...]

Light in a new light

In a paper published in Nature's NPJ Quantum Information ("Multiphoton quantum-state engineering using conditional measurements"), Omar Magaña-Loaiza, assistant professor in the Louisiana State University (LSU) Department of Physics & [...]