From Nanowerks News:

If drugs could be targeted to exactly the right place in the body, we could probably do with significantly smaller doses – and consequently fewer side effects. To allow for such precise delivery, we need tiny nanocarriers and even smaller nanotrackers to monitor them. Researchers in Finland are working on both of these.

A minuscule marker molecule carries radioactive fluorine-18 atoms. The molecule is only a few hours old. It cannot be much older, as fluorine-18 is not particularly stable. The half-life of its radiation is only two hours. No more than six hours after its creation, the fluorine-18 is sufficiently decomposed that a PET camera would not be able to detect it in the body of a laboratory animal.

This is not the only reason the molecule is in a rush. It, and thousands of its kind, are trackers, which spread through the body in the bloodstream at a speed of approximately 4.5 centimetres per second. Their goal is to find fragments of porous silica. The fragments are much larger than the molecule, approximately 150 nanometres (i.e., 0.001 millimetre) in diameter. At this scale, blood flows at a dizzying pace.

 

Read more
timthumb.php_
Image Credit:    © Alias Studio

Recent News

A megalibrary of nanoparticles

Using straightforward chemistry and a mix-and-match, modular strategy, researchers have developed a simple approach that could produce over 65,000 different types of complex nanoparticles, each containing up to six [...]

Self-driving microrobots

Most synthetic materials, including those in battery electrodes, polymer membranes, and catalysts, degrade over time because they don't have internal repair mechanisms. If you could distribute autonomous microrobots within [...]

Light in a new light

In a paper published in Nature's NPJ Quantum Information ("Multiphoton quantum-state engineering using conditional measurements"), Omar Magaña-Loaiza, assistant professor in the Louisiana State University (LSU) Department of Physics & [...]