From an article posted by Nanoneophyte:

Applications of various nano platforms in the prevention and treatment of cardiovascular disease. Nano platforms can target and break down coronary artery plaques and prevent injuries caused by stenosis or occlusion of arteries. Nanoparticulate systems can also reduce the adverse effects of reperfusion injuries and regenerate/salvage myocardium after MI, through sustained and targeted delivery of cells, biomolecules and paracrine factors.

Ischemic cardiomyopathy (CM) is the most common type of dilated cardiomyopathy. In Ischemic CM, the heart’s ability to pump blood is decreased because the heart’s main pumping chamber, the left ventricle, is enlarged, dilated and weak. This is caused by ischemia – a lack of blood supply to the heart muscle caused by coronary artery disease and heart attacks.

Treatment of ischemic CM is aimed at treating coronary artery disease, improving cardiac function and reducing heart failure symptoms. Patients usually take several medications to treat CM. Doctors also recommend lifestyle changes to decrease symptoms and hospitalizations and improve quality of life. In addition, devices and surgery may be advised.

“Nanostructured systems have the potential to revolutionize both preventive and therapeutic approaches for treating cardiovascular disease,” says Morteza Mahmoudi, Director of and Principal Investigator at the NanoBio Interactions Laboratory at Tehran University of Medical Sciences. “Given the unique physical and chemical properties of nanostructured systems, nanoscience and nanotechnology have recently demonstrated the potential to overcome many of the limitations of cardiovascular medicine through the development of new pharmaceuticals, imaging reagents and modalities, and biomedical devices.”

Mahmoudi is first author of a review paper in Nature Nanotechnology (“Multiscale technologies for treatment of ischemic cardiomyopathy”), that covers the current state of the art in employing nanoparticulate systems either to inhibit or treat ischemic heart injuries caused by the stenosis or occlusion of coronary arteries.

The review provides a brief overview of recent advances in the use of nano platforms for early detection and treatment of coronary atherosclerosis to inhibit myocardial infarction (MI; heart attack). The authors also introduce new therapeutic opportunities in the regeneration/repair of ischemic myocardium using both nanoparticles and nanostructured biomaterials that can deliver therapeutic molecules and/or (stem) cells into hibernating myocardium.

Image Credit:   Nature Publishing Group

Recent News