Nano-Scale Materials Could Shield Devices From Extreme Environments in Space

Surface conditions on Venus feature sulfuric acid rains, atmospheric pressure 92 times greater than on Earth, and temperatures topping nearly 900 degrees Fahrenheit — twice as hot as a conventional oven. In such an unforgiving setting, an unprotected spacecraft visiting the planet would be crushed and toasted in a brief matter of time.

Researchers at Stanford University are coming up with ways to help electronic devices survive in this punishing environment, starting at the nanoscale. The applications from Stanford’s Extreme Environment Microsystems Laboratory (XLab) would not only help future exploratory spacecraft on Venus, but could also be used within hot industrial or mechanical environments on Earth.

 Silicon-based semiconductors — the same ones that power typical smartphones and laptops — seize up at only 570 degrees Fahrenheit (300 degrees Celsius). Instead, the researchers propose using an atoms-thick layer that would act as a protective, heat-resistant coating for devices and sensors, shielding them from temperatures exceeding what you would find on Venus’ surface. Laboratory testing suggests that they would work up to 1,100 degrees Fahrenheit (600 degrees Celsius).
 timthumb.php_
Read more at Space.com
timthumb.php_
Image Credit:      NASA

Recent News

NanoApps Medical Near-Term Projects

NanoApps Medical is investigating the possibility that superparamagnetic nanoparticles (SPIONs) and other classes of nanoparticles (e.g., gold coated nanoshells) might have the capacity to target cancerous tumors, metastasizing cancer [...]

2018-03-22T14:35:17+00:00

Leave A Comment