A team of researchers at the University of California San Diego has developed macrophage “nanosponges” that can safely absorb and remove molecules from the bloodstream that are known to trigger sepsis. These macrophage nanosponges, which are nanoparticles cloaked in the cell membranes of macrophages, have so far improved survival rates in mice with sepsis.

This work is one example of the cell membrane cloaking technology pioneered by the lab of Liangfang Zhang, a professor of nanoengineering at the UC San Diego Jacobs School of Engineering. His group develops new nanomedicine therapies by disguising nanoparticles as the body’s own cells. Previous examples include red blood cell nanosponges to combat and prevent MRSA infections; nanoparticles cloaked in platelet cell membranes to repair wounded blood vessels; and nanofibers cloaked in beta cell membranes that could be used to help diabetes patients produce more insulin.

In the current study, Zhang’s lab developed macrophage nanosponges that offer a promising solution for effectively treating and managing sepsis. Zhang’s lab collaborated with Victor Nizet, a professor of pediatrics and pharmacy at UC San Diego, whose team helped test the macrophage nanosponges in vivo.

Sepsis occurs when the body launches an uncontrolled immune response to an infection, triggering widespread inflammation that can lead to organ failure, septic shock and even death. The U.S. Centers for Disease Control and Prevention estimate that more than 1.5 million Americans get sepsis and about 250,000 die from this condition each year.

Read more at nanowerk.com

Image Credit:  USCD

Recent News

A megalibrary of nanoparticles

Using straightforward chemistry and a mix-and-match, modular strategy, researchers have developed a simple approach that could produce over 65,000 different types of complex nanoparticles, each containing up to six [...]

Self-driving microrobots

Most synthetic materials, including those in battery electrodes, polymer membranes, and catalysts, degrade over time because they don't have internal repair mechanisms. If you could distribute autonomous microrobots within [...]

Light in a new light

In a paper published in Nature's NPJ Quantum Information ("Multiphoton quantum-state engineering using conditional measurements"), Omar Magaña-Loaiza, assistant professor in the Louisiana State University (LSU) Department of Physics & [...]