Rewarded with a Nobel Prize in Chemistry in 2016, nanomachines provide mechanical work on the smallest of scales. Yet at such small dimensions, molecular motors can complete this work in only one direction.

Researchers from the CNRS’s Institut Charles Sadron, led by Nicolas Giuseppone, a professor at the Université de Strasbourg, working in collaboration with the Laboratoire de mathématiques d’Orsay (CNRS/Université Paris-Sud), have succeeded in developing more complex molecular machines that can work in one direction and its opposite. The system can even be controlled precisely, in the same way as a gearbox.

The study was published in Nature Nanotechnology (“Dual-light control of nanomachines that integrate motor and modulator subunits”).

 

Read more at nanowerk.com

Recent News

A megalibrary of nanoparticles

Using straightforward chemistry and a mix-and-match, modular strategy, researchers have developed a simple approach that could produce over 65,000 different types of complex nanoparticles, each containing up to six [...]

Self-driving microrobots

Most synthetic materials, including those in battery electrodes, polymer membranes, and catalysts, degrade over time because they don't have internal repair mechanisms. If you could distribute autonomous microrobots within [...]

Light in a new light

In a paper published in Nature's NPJ Quantum Information ("Multiphoton quantum-state engineering using conditional measurements"), Omar Magaña-Loaiza, assistant professor in the Louisiana State University (LSU) Department of Physics & [...]