Seeing is believing when it comes to nanoparticle self-assembly. A team of University of Illinois engineers is observing the interactions of colloidal gold nanoparticles inside tiny aquariumlike sample containers to gain more control over the self-assembly process of engineered materials.

Self-assembling colloidal nanoparticles are one of the things that make stuff like LED displays, solar cells and batteries work. Researchers study these nanoparticles with still images using high-powered electron microscopes, but because colloidal nanoparticles interact through motions in liquids, traditional electron microscopy-based observation methods cannot capture the interactions that occur when these nanoparticles self-assemble, said Qian Chen, a professor of materials science and engineering and co-author of a new study.

“The colloid self-assembly process has always been a bit of a black box,” Chen said. “The particles behave like atoms and molecules, which allows us to use classical chemistry and physics theories to model their behavior. This new method, called liquid-phase transmission electron microscopy, allows us to see exactly what is happening.”
The team’s new method, published in Nature Communications, also shows that the shape of nanoparticles can control the types of materials formed.

“One challenge in nanotechnology is conquering our inability to control the process of artificial assembly,” Chen said. “By working with particles of different shapes, we can control how the particles stack up together, almost like playing with tiny Legos toys. This type of control will make a difference in a material’s properties and application.”

“We can follow the trajectory of the nanoparticles, precisely and continuously, which gives us the power to map out the assembly rate laws quantitatively,” said postdoctoral researcher and lead author Juyeong Kim. “Particular shapes prefer to attach in a way similar to how molecules connect into big polymers, and we can reproduce those conditions, which is a huge step forward in the fundamental understanding and the control over nanoparticle self-assembly.”

The group chose to experiment using gold for a reason.


Image Credit:  L. Brian Stauffer 

Recent News

A megalibrary of nanoparticles

Using straightforward chemistry and a mix-and-match, modular strategy, researchers have developed a simple approach that could produce over 65,000 different types of complex nanoparticles, each containing up to six [...]

Self-driving microrobots

Most synthetic materials, including those in battery electrodes, polymer membranes, and catalysts, degrade over time because they don't have internal repair mechanisms. If you could distribute autonomous microrobots within [...]

Light in a new light

In a paper published in Nature's NPJ Quantum Information ("Multiphoton quantum-state engineering using conditional measurements"), Omar Magaña-Loaiza, assistant professor in the Louisiana State University (LSU) Department of Physics & [...]