A synthetic DNA-targeting molecule could pave the way for tissue regeneration.

Stem cells can be triggered to change into heart muscle cells by a new method involving synthetic molecules. The method overcomes challenges facing current approaches and can be fine-tuned to prompt the formation of a variety of cell types.

Human induced pluripotent stem cells (hiPSCs) are generated from adult cells and can be programmed to change into any cell type in the body. The cell type conversion is controlled by coordinated regulation of signalling cues and genes. Molecules that switch ON and OFF these diverse signals involved in organ development have been used to control the fate of hiPSCs. But molecules that can directly switch OFF the desired signalling genes have not been found. Currently available protocols involve the introduction of foreign genetic material, which could be risky to patients.

Junichi Taniguchi and Ganesh Pandian Namasivayam at Kyoto University’s Institute for Integrated Cell-Material Sciences (iCeMS) in Japan constructed a synthetic molecule that can recognize and bind with a specific DNA sequence involved in the differentiation of hiPSCs into mesoderm, an intermediary cell type that can be stimulated into changing into heart muscle cells.

Read more

Image Credit:  Sudhakar KeerthiPriyaa

Recent News

A megalibrary of nanoparticles

Using straightforward chemistry and a mix-and-match, modular strategy, researchers have developed a simple approach that could produce over 65,000 different types of complex nanoparticles, each containing up to six [...]

Self-driving microrobots

Most synthetic materials, including those in battery electrodes, polymer membranes, and catalysts, degrade over time because they don't have internal repair mechanisms. If you could distribute autonomous microrobots within [...]