Now you can build your own low-cost 3-D bioprinter by modifying a standard commercial desktop 3-D printer for under $500 — thanks to an open-source “LVE 3-D” design developed by Carnegie Mellon University (CMU) researchers. CMU provides detailed instructional videos.
You can print artificial human tissue scaffolds on a larger scale (entire human heart) and at higher resolution and quality, the researchers say. Most 3-D bioprinters start between $10K and $20K, and commercial 3D printers cost up to $200,000 and are typically proprietary machines, closed source, and difficult to modify.

AI-enhanced medical imaging technique reduces radiation doses, MRI times

Massachusetts General Hospital (MGH) researchers have developed a machine-learning-based technique that enables clinicians to acquire higher-quality images without the increased radiation dose — from acquiring additional data from computed tomography (CT) or positron emission tomography (PET) — or the uncomfortably long scan times needed for magnetic resonance imaging (MRI).
The new AUTOMAP (automated transform by manifold approximation) deep-learning technique avoids radiologists having to tweak manual settings to overcome imperfections in raw data.

The technique could also help radiologists make real-time decisions about imaging protocols while the patient is in the scanner (image reconstruction time is just tens of milliseconds), thanks to AI algorithms running on graphical processing units (GPUs). — MGH Athinoula A. Martinos Center for Biomedical Imaging, Nature.


Image Credit:  Profusa

Recent News

A megalibrary of nanoparticles

Using straightforward chemistry and a mix-and-match, modular strategy, researchers have developed a simple approach that could produce over 65,000 different types of complex nanoparticles, each containing up to six [...]

Self-driving microrobots

Most synthetic materials, including those in battery electrodes, polymer membranes, and catalysts, degrade over time because they don't have internal repair mechanisms. If you could distribute autonomous microrobots within [...]