From an article at phys.org:

A team of researchers in Japan has developed a new platform for culturing human pluripotent stem cells that provides far more control of culture conditions than previous tools by using micro and nanotechnologies.

The Multiplexed Artificial Cellular Microenvironment (MACME) array places nanofibres, mimicking cellular matrices, into fluid-filled micro-chambers of precise sizes, which mimic extracellular environments.

Human pluripotent stems cells (hPSCs) hold great promise for tissue engineering, regenerative medicine and cell-based therapies because they can become any type of cell. The environment surrounding the cells plays a major role in determining what tissues they become, if they replicate into more cells, or die. However, understanding these interactions has been difficult because researchers have lacked tools that work on the appropriate scale.

Often, stem cells are cultured in a cell culture medium in small petri dishes. While factors such as medium pH levels and nutrients can be controlled, the artificial set up is on the macroscopic scale and does not allow for precise control of the physical environment surrounding the cells.

The MACME array miniaturizes this set up, culturing stem cells in rows of micro-chambers of cell culture medium. It also takes it a step further by placing nanofibres in these chambers to mimic the structures found around cells.

 

Read more at phys.com
timthumb.php_
Image Credit:      Kyoto University iCeMS

Recent News

A megalibrary of nanoparticles

Using straightforward chemistry and a mix-and-match, modular strategy, researchers have developed a simple approach that could produce over 65,000 different types of complex nanoparticles, each containing up to six [...]

Self-driving microrobots

Most synthetic materials, including those in battery electrodes, polymer membranes, and catalysts, degrade over time because they don't have internal repair mechanisms. If you could distribute autonomous microrobots within [...]

Light in a new light

In a paper published in Nature's NPJ Quantum Information ("Multiphoton quantum-state engineering using conditional measurements"), Omar Magaña-Loaiza, assistant professor in the Louisiana State University (LSU) Department of Physics & [...]