From an article at nanowerk.com:

MIT researchers have devised a way to make tumor cells more susceptible to certain types of cancer treatment by coating the cells with nanoparticles before delivering drugs.

By tethering hundreds of nanoparticles to the surfaces of tumor cells in the presence of a mechanical force, the researchers made the cells much more vulnerable to attack by a drug that triggers cancer cells to commit suicide. It appears that the tethered nanoparticles increase the forces exerted on the cells by flowing blood, which makes the cells more likely to die.

“When you attach many particles to the membranes of these cells, and then expose them to forces that mimic those in the human body, like blood flow, these therapeutics become more effective. It’s a way of amplifying the forces on the cells using polymeric materials,” says Michael Mitchell, a postdoc at MIT’s Koch Institute for Integrative Cancer Research and the lead author of the study.

In tests in mice, the researchers found that the tethered nanoparticles made the cell-suicide-inducing drug 50 percent more effective, and this combination eliminated up to 90 percent of tumor cells in the mice.

 

Read more at nanowerk.com

Recent News

A megalibrary of nanoparticles

Using straightforward chemistry and a mix-and-match, modular strategy, researchers have developed a simple approach that could produce over 65,000 different types of complex nanoparticles, each containing up to six [...]

Self-driving microrobots

Most synthetic materials, including those in battery electrodes, polymer membranes, and catalysts, degrade over time because they don't have internal repair mechanisms. If you could distribute autonomous microrobots within [...]