A recent UCLA study demonstrates a new process for screening T cells, part of the body’s natural defenses, for characteristics vital to the success of cell-based treatments. The method filters T cells based on the receptor proteins found on their surface—which enable them to latch onto certain threats—and the type and amount of cell-killing or immune response-triggering molecules that they secrete.
The research is published in the journal Proceedings of the National Academy of Sciences.
The researchers discovered three previously unidentified, naturally occurring T-cell receptors that target prostate cancer using their screening method. In validation tests, T-cell receptors associated with the highest levels of secretion were the most likely to elicit a response against cancer cells. Rate of functional T-cell receptors was around tenfold higher than using previous techniques.
Immunotherapy, treatment that harnesses the body’s natural defenses, is an ever-growing subject of research into cancer and other severe illnesses. The potential of engineered T cell-based immunotherapies comes in part from their ability to narrowly target signatures of disease that are “recognized” by genetically engineered receptors. Since 2017, seven therapies deploying immune cells have gained approval from the Food and Drug Administration to treat blood and skin cancers.
The scientists used nanovials, microscopic bowl-shaped hydrogel containers developed at UCLA. Inside, the containers are customized to include specially shaped molecules that enable each to trap one cell plus selected secretions.
The team first evaluated a population of 20 million T cells sourced from one healthy patient’s blood sample. Different groups of nanovials had targets associated with different common viruses. This study validated the ability for nanovials to find T cells, and their receptors, that react to viruses.
A second experiment with a different patient applied the technology to a much more challenging problem: rare prostate cancer targets the scientists had identified in previous studies. Importantly, those molecular targets acted to both capture the T cells and cause them to secrete certain molecules that kill target cells. In other experiments, the nanovials also had molecules allowing each to capture more than one type of immune-activating secretion.
The three never-before-seen receptors for prostate cancer found in this research could ultimately lead to new tumor-fighting immunotherapies. The ability to select T cells that both bind to a disease-related target and secrete plenty of molecules that trigger an immune response—displayed in the study—is expected to provide major advantages for uncovering additional new disease-targeting receptors, developing cellular therapies and translating those therapies to benefit patients. Using standard lab techniques to label and analyze the nanovials and their contents means that more researchers can apply the new technique.
More information: Doyeon Koo et al, Defining T cell receptor repertoires using nanovial-based binding and functional screening, Proceedings of the National Academy of Sciences (2024). DOI: 10.1073/pnas.2320442121
Journal information: Proceedings of the National Academy of Sciences
Provided by University of California, Los Angeles
News
The FDA approved a gel that can stop bleeding from wounds in seconds
Aug 15 (Reuters) - The U.S. Food and Drug Administration has cleared Cresilon's gel to quickly control bleeding, the privately held company said on Thursday, potentially giving emergency medical technicians and combat medics a [...]
High levels of microplastics found in prostate tumors, possibly linked to take-out food
The presence of microplastics in prostate tumors points to potential health risks, and researchers are calling for urgent studies to explore how take-out food may be driving this exposure. In a recent study published [...]
AI outperforms radiologists in brain tumor diagnosis
As artificial intelligence advances, its uses and capabilities in real-world applications continue to reach new heights that may even surpass human expertise. In the field of radiology, where a correct diagnosis is crucial to ensure [...]
Breakthrough Study Reveals Molecular Clues to Dementia Origins
Work could lead to the discovery of new therapeutic targets. For the first time, researchers have identified “molecular markers” linked to degeneration—detectable changes in cells and their gene-regulating networks—that are common across several types [...]
Better than blood tests? Nanoparticle potential found for assessing kidneys
In a study published July 29 in Advanced Materials, University of Texas at Dallas researchers found that X-rays of the kidneys using gold nanoparticles as a contrast agent might be more accurate in detecting kidney [...]
Greener nanomaterials could transform how our everyday stuff is made
Tiny nanoparticles are at the forefront of materials science—with special properties that make them great at absorbing light in solar panels, cleaning wastewater, and delivering drugs precisely. Some nanoparticles take the form of sheets or fibers. But nanomaterials all [...]
AI could predict breast cancer risk via ‘zombie cells’
Women worldwide could see better treatment with new AI technology, which enables better detection of damaged cells and more precisely predicts the risk of getting breast cancer, shows new research from the [...]
Through the eyes of a cat – biomimicry of feline eyes may revolutionize robotic vision
In a recent study published in the journal Science Advances, researchers leveraged crucial aspects of feline eyes, particularly their tapetum lucidum and vertically elongated pupils (VP), to develop a monocular artificial vision system capable of [...]
New Alzheimer’s Therapy Shows Remarkable Results in Animal Trials
A study from TUM demonstrates a promising therapeutic approach. Researchers at the Technical University of Munich (TUM) have made promising advances in preventing Alzheimer’s by developing a new therapeutic strategy. Their approach focuses on targeting the amyloid beta [...]
Rewriting Cancer’s Blueprint: New Study Challenges Old Theories
A new study argues for a revised clonal evolution model of cancer, incorporating genetic and non-genetic factors to improve understanding and treatment. Like all living organisms, cancer cells are driven by the fundamental need [...]
Microplastics Everywhere: Experts Demand Worldwide Treaty Before It’s Too Late
A new report calls for global action on plastic pollution, urging reductions in plastic production and microplastic emissions. Researchers stress the importance of addressing plastic pollution through both scientific and social science perspectives. A [...]
Blood tests could soon predict your risk of Alzheimer’s
Scientists are closing in on biomarkers that reflect the progression of Alzheimer’s disease and could improve treatments. Like many Alzheimer’s researchers, neurologist Randall Bateman is not prone to effusiveness, having endured disappointments in his [...]
Recharging mitochondria—nanoflowers offer a new way to simulate energy production
When we need to recharge, we might take a vacation or relax at the spa. But what if we could recharge at the cellular level, fighting against aging and disease with the microscopic building [...]
Revealing the Invisible: Living Cells Can Be Seen With Infrared Light
IST’s new infrared microscopy technique allows for the detailed imaging of biomolecules in cells, supporting advancements in biotechnology and cellular therapies. In an effort to advance biotechnology innovations, scientists are working to develop faster, [...]
3,600+ Chemicals From Food Packaging Found in Human Bodies
A recent review has uncovered the widespread presence of food contact chemicals (FCC) in humans, identifying 3,601 chemicals used in food packaging and related products found in the human body. The study also points [...]
CREME: A New AI-Powered Virtual Lab to Help Cure Genetic Diseases
CREME, an AI-powered virtual lab, developed at Cold Spring Harbor Laboratory, offers a revolutionary approach to genetic research by simulating CRISPR interference (CRISPRi). This tool enables scientists to perform virtual genetic experiments and predict [...]