Researchers have discovered the reason why targeted treatment for non-small cell lung cancer fails to work for some patients, particularly those who have never smoked.
The study shows that lung cancer cells with two particular genetic mutations are more likely to double their genome, which helps them to withstand treatment and develop resistance to it. Conducted by researchers from UCL, the Francis Crick Institute, and AstraZeneca, the study is published today (June 13) in the journal Nature Communications.
Epidemiology and Genetic Factors of NSCLC
In the UK, lung cancer is the third most common type of cancer and the leading cause of cancer death. Around 85% of patients with lung cancer have non-small cell lung cancer (NSCLC), and this is the most common type found in patients who have never smoked. Considered separately, ‘never smoked’ lung cancer is the fifth most common cause of cancer death in the world.
The most common genetic mutation found in NSCLC is in the epidermal growth factor receptor gene (EGFR), which enables cancer cells to grow faster. It is found in about 10-15% of NSCLC cases in the UK, particularly in patients who have never smoked.
Challenges of Current Treatments
Survival rates vary depending on how advanced the cancer is, with only around a third of patients with Stage IV NSCLC and an EGFR mutation surviving for up to three years.
Lung cancer treatments that target this mutation, known as EGFR inhibitors, have been available for over 15 years. However, while some patients see their cancer tumors shrink with EGFR inhibitors, other patients, particularly those with an additional mutation in the p53 gene (which plays a role in tumor suppression), fail to respond and experience far worse survival rates. But scientists and clinicians have so far been unable to explain why this is the case.
Insights From New Research
To find the answer, the researchers re-analyzed data from trials of the newest EGFR inhibitor, Osimertinib, developed by AstraZeneca. They looked at baseline scans and first follow-up scans taken a few months into treatment for patients with either EGFR-only or with EGFR and p53 mutations.
The team compared every tumor on the scans, far more than were measured in the original trial. They found that for patients with just the EGFR mutations, all tumors got smaller in response to treatment. But for patients with both mutations, while some tumors had shrunk others had grown, providing evidence of rapid drug resistance. This pattern of response, when some but not all areas of a cancer are shrinking in response to a drug treatment within an individual patient, is known as a ‘mixed response’ and is a challenge for oncologists caring for patients with cancer.
Study Findings and Future Implications
To investigate why some tumors in these patients might be more prone to drug resistance, the team then studied a mouse model with both the EGFR and p53 mutation. They found that within resistant tumors in these mice, far more cancer cells had doubled their genome, giving them extra copies of all their chromosomes.
The researchers then treated lung cancer cells in the lab, some with just the single EGFR mutation and some with both mutations, with an EGFR inhibitor. They found that within five weeks of exposure to the drug, a significantly higher percentage of cells with both the double mutation and double genomes had multiplied into new drug-resistant cells.
Toward Better Diagnostic Tools
Professor Charles Swanton, from UCL Cancer Institute and the Francis Crick Institute, said: “We’ve shown why having a p53 mutation is associated with worse survival in patients with non-smoking related lung cancer, which is the combination of EGFR and p53 mutations enabling genome doubling. This increases the risk of drug-resistant cells developing through chromosomal instability.”
Non-small cell lung cancer patients are already tested for EGFR and p53 mutations, but there is currently no standard test to detect the presence of whole genome doubling. The researchers are already looking to develop a diagnostic test for clinical use.
Clinical Applications and Future Research
Dr. Crispin Hiley, from UCL Cancer Institute and a Consultant Clinical Oncologist at UCLH, said: “Once we can identify patients with both EGFR and p53 mutations whose tumours display whole genome doubling, we can then treat these patients in a more selective way. This might mean more intensive follow up, early radiotherapy or ablation to target resistant tumors, or early use of combinations of EGFR inhibitors, such as Osimertinib, with other drugs including chemotherapy.”
Reference: “Heterogeneous responses to EGFR tyrosine kinase inhibition in non-small cell lung cancer result from chromosomal instability facilitated by whole genome doubling and TP53 co-mutation” by Sebastijan Hobor, Maise Al Bakir, Crispin T. Hiley and Marcin Skrzypski et al., 13 June 2024, Nature Communications.
DOI: https://doi.org/10.1038/s41467-024-47606-9
This work was supported by the Francis Crick Institute, which receives its core funding from Cancer Research UK, the UK Medical Research Council, and Wellcome.

News
New Once-a-Week Shot Promises Life-Changing Relief for Parkinson’s Patients
A once-a-week shot from Australian scientists could spare people with Parkinson’s the grind of taking pills several times a day. The tiny, biodegradable gel sits under the skin and releases steady doses of two [...]
Weekly injectable drug offers hope for Parkinson’s patients
A new weekly injectable drug could transform the lives of more than eight million people living with Parkinson's disease, potentially replacing the need for multiple daily tablets. Scientists from the University of South Australia [...]
Most Plastic in the Ocean Is Invisible—And Deadly
Nanoplastics—particles smaller than a human hair—can pass through cell walls and enter the food web. New research suggest 27 million metric tons of nanoplastics are spread across just the top layer of the North [...]
Repurposed drugs could calm the immune system’s response to nanomedicine
An international study led by researchers at the University of Colorado Anschutz Medical Campus has identified a promising strategy to enhance the safety of nanomedicines, advanced therapies often used in cancer and vaccine treatments, [...]
Nano-Enhanced Hydrogel Strategies for Cartilage Repair
A recent article in Engineering describes the development of a protein-based nanocomposite hydrogel designed to deliver two therapeutic agents—dexamethasone (Dex) and kartogenin (KGN)—to support cartilage repair. The hydrogel is engineered to modulate immune responses and promote [...]
New Cancer Drug Blocks Tumors Without Debilitating Side Effects
A new drug targets RAS-PI3Kα pathways without harmful side effects. It was developed using high-performance computing and AI. A new cancer drug candidate, developed through a collaboration between Lawrence Livermore National Laboratory (LLNL), BridgeBio Oncology [...]
Scientists Are Pretty Close to Replicating the First Thing That Ever Lived
For 400 million years, a leading hypothesis claims, Earth was an “RNA World,” meaning that life must’ve first replicated from RNA before the arrival of proteins and DNA. Unfortunately, scientists have failed to find [...]
Why ‘Peniaphobia’ Is Exploding Among Young People (And Why We Should Be Concerned)
An insidious illness is taking hold among a growing proportion of young people. Little known to the general public, peniaphobia—the fear of becoming poor—is gaining ground among teens and young adults. Discover the causes [...]
Team finds flawed data in recent study relevant to coronavirus antiviral development
The COVID pandemic illustrated how urgently we need antiviral medications capable of treating coronavirus infections. To aid this effort, researchers quickly homed in on part of SARS-CoV-2's molecular structure known as the NiRAN domain—an [...]
Drug-Coated Neural Implants Reduce Immune Rejection
Summary: A new study shows that coating neural prosthetic implants with the anti-inflammatory drug dexamethasone helps reduce the body’s immune response and scar tissue formation. This strategy enhances the long-term performance and stability of electrodes [...]
Scientists discover cancer-fighting bacteria that ‘soak up’ forever chemicals in the body
A family of healthy bacteria may help 'soak up' toxic forever chemicals in the body, warding off their cancerous effects. Forever chemicals, also known as PFAS (per- and polyfluoroalkyl substances), are toxic chemicals that [...]
Johns Hopkins Researchers Uncover a New Way To Kill Cancer Cells
A new study reveals that blocking ribosomal RNA production rewires cancer cell behavior and could help treat genetically unstable tumors. Researchers at the Johns Hopkins Kimmel Cancer Center and the Department of Radiation Oncology and Molecular [...]
AI matches doctors in mapping lung tumors for radiation therapy
In radiation therapy, precision can save lives. Oncologists must carefully map the size and location of a tumor before delivering high-dose radiation to destroy cancer cells while sparing healthy tissue. But this process, called [...]
Scientists Finally “See” Key Protein That Controls Inflammation
Researchers used advanced microscopy to uncover important protein structures. For the first time, two important protein structures in the human body are being visualized, thanks in part to cutting-edge technology at the University of [...]
AI tool detects 9 types of dementia from a single brain scan
Mayo Clinic researchers have developed a new artificial intelligence (AI) tool that helps clinicians identify brain activity patterns linked to nine types of dementia, including Alzheimer's disease, using a single, widely available scan—a transformative [...]
Is plastic packaging putting more than just food on your plate?
New research reveals that common food packaging and utensils can shed microscopic plastics into our food, prompting urgent calls for stricter testing and updated regulations to protect public health. Beyond microplastics: The analysis intentionally [...]