From Science Daily:

Molecular sized machines could in the future be used to control important mechanisms in the body. In a recent study, researchers at University of California, Berkeley, USA, and Umeå University in northern Sweden show how a nanoballoon comprising a single carbon molecule ten thousand times thinner than a human hair can be controlled electrostatically to switch between an inflated and a collapsed state.

Inflatable balloon actuators are commonly used for macroscopic applications to lift buildings, as impact protection in cars or to widen narrowed or obstructed arteries or veins. At the micro scale they are used as micro pumps and in nature jumping spiders create microformat fluid-filled cushions to power their legs in explosive jumps.

Interestingly, at the nanoscale, balloon actuators are virtually unknown. However, a few years ago researchers at the Penn State University theoretically proposed a charge controlled nanoballoon actuator based on the collapsing and reinflation of a carbon nanotube.

Now, this has been realized experimentally by Hamid Reza Barzegar and his colleagues.


Read more
Image Credit:   Image courtesy of Umeå University

Recent News

A megalibrary of nanoparticles

Using straightforward chemistry and a mix-and-match, modular strategy, researchers have developed a simple approach that could produce over 65,000 different types of complex nanoparticles, each containing up to six [...]

Self-driving microrobots

Most synthetic materials, including those in battery electrodes, polymer membranes, and catalysts, degrade over time because they don't have internal repair mechanisms. If you could distribute autonomous microrobots within [...]

Light in a new light

In a paper published in Nature's NPJ Quantum Information ("Multiphoton quantum-state engineering using conditional measurements"), Omar Magaña-Loaiza, assistant professor in the Louisiana State University (LSU) Department of Physics & [...]