We have frequently cited examples of the artificial molecular machines that can be built from DNA.

An open question is whether these prototype molecular machines can be improved toward practical applications. For example, can simple machines for manipulating molecules be improved to the point of implementing atomically precise manufacturing? A recent publication provides an example of rational improvement of a simple DNA machine reported three years ago.

Three years ago a news release from the Biodesign Institute of Arizona State University reported “Tiny tweezers allow precision control of enzymes


Read more


Image credit: Biodesign Institute, Arizona State University. Left panel shows tweezers in the open position, with the enzyme (green) on the upper arm and the co-factor (gold) on the lower arm. Supplying a complementary fuel strand causes the tweezers to close, producing the reaction of the enzyme-cofactor pair. (Right panel) while a set strand restores the tweezers to their open position. Biodesign Institute, Arizona State University

Recent News

A megalibrary of nanoparticles

Using straightforward chemistry and a mix-and-match, modular strategy, researchers have developed a simple approach that could produce over 65,000 different types of complex nanoparticles, each containing up to six [...]

Self-driving microrobots

Most synthetic materials, including those in battery electrodes, polymer membranes, and catalysts, degrade over time because they don't have internal repair mechanisms. If you could distribute autonomous microrobots within [...]