From Nanowerk News:

Researchers at the University of Tokyo used MEMS (Micro Electro Mechanical Systems) technology to produce spherical vesicles (asymmetric giant lipid vesicles/liposomes) surrounded by a membrane that, like the membrane of our cells, has an inner and outer layer composed of different phospholipids. In contrast to conventional methods of creating vesicles, this new method leaves little trace of organic solvents inside the vesicle and is an important contribution as a fundamental technique for development of artificial cell models.

Giant liposome formation methods using MEMS technology can better control the size and the encapsulated concentration compared with conventional formation methods. However, when using these formation methods based on the MEMS technology, it is impossible to avoid incorporating organic solvents in the liposome membranes, greatly affecting the stability of the liposome and rendering such methods unsuitable as a tool for researching artificial cells.

Read more

Image Credit: Aki Sato

Recent News

A megalibrary of nanoparticles

Using straightforward chemistry and a mix-and-match, modular strategy, researchers have developed a simple approach that could produce over 65,000 different types of complex nanoparticles, each containing up to six [...]

Self-driving microrobots

Most synthetic materials, including those in battery electrodes, polymer membranes, and catalysts, degrade over time because they don't have internal repair mechanisms. If you could distribute autonomous microrobots within [...]