NanoApps Medical is investigating the possibility that superparamagnetic nanoparticles (SPIONs) (Figure 1) and other classes of nanoparticles (e.g., gold coated nanoshells) (Figure 2) might have the capacity to target cancerous tumors, metastasizing cancer cells, pathogens, etc. to deactivate/eliminate them via hypothermia.

This means that once the nanoparticles are adhered to their targets, they would be heated by an external source (a magnetic field in the case of SPIONs, and near-infrared laser light in the case of gold nanoshells) to inflict irreversible thermal damage to these entities through the catastrophic disruption of their cell membranes.

Additionally, gold nanoshells may be synthesized to be hollow, which means that they might be loaded with powerful drugs to impart a dual activity against their targets. A further advantage of this strategy is that the “collateral damage” to surrounding healthy cells will be minimized as the thermal “blast zones” and drug delivery would be highly localized, in stark contrast to conventional chemotherapies that flood the patient with toxic chemicals.

Read more at nanoappsmedical.com

Image Credit:     Alias Studio Sydney

News This Week

NanoApps Athletics Inc. Established

Frank Boehm (NanoApps Medical Inc. founder) and Amanda Scott (NA CEO) join NanoApps Athletics Inc. NanoApps Athletics Inc proposes a unique synergistic biochemical/nanomedical strategy for the expedited repair and healing of Achilles tendon micro [...]

Light in a new light

In a paper published in Nature's NPJ Quantum Information ("Multiphoton quantum-state engineering using conditional measurements"), Omar Magaña-Loaiza, assistant professor in the Louisiana State University (LSU) Department of Physics & Astronomy, and his team of [...]

Brain-computer interfaces without the mess

It sounds like science fiction: controlling electronic devices with brain waves. But researchers have developed a new type of electroencephalogram (EEG) electrode that can do just that, without the sticky gel required for conventional [...]