This is the full-length version of this post. You can read the condensed version, which appeared as an opinion article in the Washington Post, here.
The coronavirus pandemic pits all of humanity against the virus. The damage to health, wealth, and well-being has already been enormous. This is like a world war, except in this case, we’re all on the same side. Everyone can work together to learn about the disease and develop tools to fight it. I see global innovation as the key to limiting the damage. This includes innovations in testing, treatments, vaccines, and policies to limit the spread while minimizing the damage to economies and well-being.
This memo shares my view of the situation and how we can accelerate these innovations. (Because this post is long, it is also available as a PDF.) The situation changes every day, there is a lot of information available—much of it contradictory—and it can be hard to make sense of all the proposals and ideas you may hear about. It can also sound like we have all the scientific advances needed to re-open the economy, but in fact we do not. Although some of what’s below gets fairly technical, I hope it helps people make sense of what is happening, understand the innovations we still need, and make informed decisions about dealing with the pandemic.
Exponential growth and decline
In the first phase of the pandemic, we saw an exponential spread in a number of countries, starting with China and then throughout Asia, Europe, and the United States. The number of infections was doubling many times every month. If people’s behavior had not changed, then most of the population would have been infected. By changing behavior, many countries have gotten the infection rate to plateau and start to come down.
Exponential growth is not intuitive. If you say that 2 percent of the population is infected and this will double every eight days, most people won’t immediately figure out that in 40 days, the majority of the population will be infected. The big benefit of the behavior change is to reduce the infection rate dramatically so that, instead of doubling every eight days, it goes down every eight days.
We use something called the reproduction rate, or R0 (pronounced “are-nought”), to calculate how many new infections are caused by an earlier infection. R0 is hard to measure, but we know it’s below 1.0 wherever the number of cases is going down and above 1.0 wherever the number of cases is going up. And what may appear to be a small difference in R0 can lead to very large changes.
If every infection goes from causing 2.0 cases to only causing 0.7 infections, then after 40 days you have one-sixth as many infections instead of 32 times as many. That’s 192 times fewer cases. Here’s another way to think about it: If you started with 100 infections in a community, after 40 days you would end up with 17 infections at the lower R0 and 3,200 at the higher one. Experts are debating now just how long to keep R0 very low to drive down the number of cases before opening up begins.
Exponential decline is even less intuitive. A lot of people will be stunned that in many places we will go from hospitals being overloaded in April to having lots of empty beds in July. The whiplash will be confusing, but it is inevitable from the exponential nature of infection.
As we get into the summer, some locations that maintain behavior change will experience exponential decline. However, as behavior goes back to normal, some locations will stutter along with persistent clusters of infections and some will go back into exponential growth. The picture will be more complex than it is today, with a lot of heterogeneity.
Image Credit: AP
News This Week
Nerve Damage Can Disrupt Immunity Across the Entire Body
A single nerve injury can quietly reshape the immune system across the entire body. Preclinical research from McGill University suggests that nerve injuries may lead to long-lasting changes in the immune system, and these [...]
Fake Science Is Growing Faster Than Legitimate Research, New Study Warns
New research reveals organized networks linking paper mills, intermediaries, and compromised academic journals Organized scientific fraud is becoming increasingly common, ranging from fabricated research to the buying and selling of authorship and citations, according [...]
Scientists Unlock a New Way to Hear the Brain’s Hidden Language
Scientists can finally hear the brain’s quietest messages—unlocking the hidden code behind how neurons think, decide, and remember. Scientists have created a new protein that can capture the incoming chemical signals received by brain [...]
Does being infected or vaccinated first influence COVID-19 immunity?
A new study analyzing the immune response to COVID-19 in a Catalan cohort of health workers sheds light on an important question: does it matter whether a person was first infected or first vaccinated? [...]
We May Never Know if AI Is Conscious, Says Cambridge Philosopher
As claims about conscious AI grow louder, a Cambridge philosopher argues that we lack the evidence to know whether machines can truly be conscious, let alone morally significant. A philosopher at the University of [...]
AI Helped Scientists Stop a Virus With One Tiny Change
Using AI, researchers identified one tiny molecular interaction that viruses need to infect cells. Disrupting it stopped the virus before infection could begin. Washington State University scientists have uncovered a method to interfere with a key [...]
Deadly Hospital Fungus May Finally Have a Weakness
A deadly, drug-resistant hospital fungus may finally have a weakness—and scientists think they’ve found it. Researchers have identified a genetic process that could open the door to new treatments for a dangerous fungal infection [...]
Fever-Proof Bird Flu Variant Could Fuel the Next Pandemic
Bird flu viruses present a significant risk to humans because they can continue replicating at temperatures higher than a typical fever. Fever is one of the body’s main tools for slowing or stopping viral [...]
What could the future of nanoscience look like?
Society has a lot to thank for nanoscience. From improved health monitoring to reducing the size of electronics, scientists’ ability to delve deeper and better understand chemistry at the nanoscale has opened up numerous [...]
Scientists Melt Cancer’s Hidden “Power Hubs” and Stop Tumor Growth
Researchers discovered that in a rare kidney cancer, RNA builds droplet-like hubs that act as growth control centers inside tumor cells. By engineering a molecular switch to dissolve these hubs, they were able to halt cancer [...]
Platelet-inspired nanoparticles could improve treatment of inflammatory diseases
Scientists have developed platelet-inspired nanoparticles that deliver anti-inflammatory drugs directly to brain-computer interface implants, doubling their effectiveness. Scientists have found a way to improve the performance of brain-computer interface (BCI) electrodes by delivering anti-inflammatory drugs directly [...]
After 150 years, a new chapter in cancer therapy is finally beginning
For decades, researchers have been looking for ways to destroy cancer cells in a targeted manner without further weakening the body. But for many patients whose immune system is severely impaired by chemotherapy or radiation, [...]
Older chemical libraries show promise for fighting resistant strains of COVID-19 virus
SARS‑CoV‑2, the virus that causes COVID-19, continues to mutate, with some newer strains becoming less responsive to current antiviral treatments like Paxlovid. Now, University of California San Diego scientists and an international team of [...]
Lower doses of immunotherapy for skin cancer give better results, study suggests
According to a new study, lower doses of approved immunotherapy for malignant melanoma can give better results against tumors, while reducing side effects. This is reported by researchers at Karolinska Institutet in the Journal of the National [...]
Researchers highlight five pathways through which microplastics can harm the brain
Microplastics could be fueling neurodegenerative diseases like Alzheimer's and Parkinson's, with a new study highlighting five ways microplastics can trigger inflammation and damage in the brain. More than 57 million people live with dementia, [...]
Tiny Metal Nanodots Obliterate Cancer Cells While Largely Sparing Healthy Tissue
Scientists have developed tiny metal-oxide particles that push cancer cells past their stress limits while sparing healthy tissue. An international team led by RMIT University has developed tiny particles called nanodots, crafted from a metallic compound, [...]















