What if you didn’t need surgery to implant a pacemaker on a faulty heart? What if you could control your blood sugar levels without an injection of insulin, or mitigate the onset of a seizure without even pushing a button?

I and a team of scientists in my laboratory at the Salk Institute are tackling these challenges by developing a new technology known as sonogenetics, the ability to noninvasively control the activity of cells using sound.

From light to sound

I am a neuroscientist interested in understanding how the brain detects environmental changes and responds. Neuroscientists are always looking for ways to influence neurons in living brains so that we can analyze the outcome and understand both how that brain works and how to better treat brain disorders.

Creating these specific changes requires the development of new tools. For the last two decades the go-to tool for researchers in my field has been optogenetics, a technique in which engineered brain cells in animals are controlled with light. This process involves inserting an optic fiber deep within the animal’s brain to deliver light to the target region.

When these nerve cells are exposed to blue light, the light-sensitive protein is activated, allowing those brain cells to communicate with each other and modify the animal’s behavior. For example, animals with Parkinson’s disease can be cured of their involuntary tremors by shining light on brain cells that have been specially engineered making them light-sensitive. But the obvious drawback is that this procedure depends on surgically implanting a cable into the brain – a strategy that cannot be easily translated into people.

My goal had been to figure out how to manipulate the brain without using light.

Image Credit:  Shutterstock

Thanks to Heinz V. Hoenen.  Follow him on twitter: @HeinzVHoenen

News This Week

Researchers Discover New Origin of Deep Brain Waves

Understanding hippocampal activity could improve sleep and cognition therapies. Researchers from the University of California, Irvine’s biomedical engineering department have discovered a new origin for two essential brain waves—slow waves and sleep spindles—that are critical for [...]