Summary: Researchers at Ruhr University Bochum explore why consciousness evolved and why different species developed it in distinct ways. By comparing humans with birds, they show that complex awareness may arise through different neural architectures yet serve similar purposes.
New research examines why consciousness evolved by comparing humans with birds.
What evolutionary purpose does consciousness serve, and what insights can birds offer about its origins? These questions are at the heart of two new studies from researchers at Ruhr University Bochum.
Over the past twenty years, interest in the science of consciousness has grown rapidly, yet a key issue remains unresolved: What is consciousness actually for? Why did it appear in the first place? Finding answers is essential for understanding why certain species (such as our own) developed conscious awareness, while others (such as oak trees) did not. Research on bird brains adds another important perspective, showing that evolution can produce similar functional outcomes for consciousness even when the underlying brain structures differ. The teams led by Professors Albert Newen and Onur Güntürkün at Ruhr University Bochum, Germany recently published their findings in the journal Philosophical Transactions of the Royal Society B.

Purposes of pleasure and pain?
Our conscious experience shapes every part of our lives through moments of enjoyment as well as discomfort. We might notice the warmth of sunlight on our skin or listen to birdsong and feel a sense of ease.
At other times, we become aware of pain, such as a knee that aches after a fall, or we struggle with persistent feelings of pessimism. This raises a fundamental question: why would living beings evolve a capacity that includes both pleasurable sensations and experiences that can be deeply unpleasant or even overwhelming?
Albert Newen and Carlos Montemayor describe consciousness as consisting of three forms, each serving a distinct purpose: 1. basic arousal, 2. general alertness, and 3. reflexive (self-)consciousness.
Stage One: Basic Arousal
"Evolutionarily, basic arousal developed first, with the base function of putting the body in a state of ALARM in life-threatening situations so that the organism can stay alive," explains Newen. "Pain is an extremely efficient means for perceiving damage to the body and to indicate the associated threat to its continued life. This often triggers a survival response, such as fleeing or freezing."
Stage Two: General Alertness
A second step in evolution is the development of general alertness. This allows us to focus on one item in a simultaneous flow of different information. When we see smoke while someone is speaking to us, we can only focus on the smoke and search for its source.
"This makes it possible to learn about new correlations: first the simple, causal correlation that smoke comes from fire and shows where a fire is located. But targeted alertness also lets us identify complex, scientific correlations," says Carlos Montemayor.
Stage Three: Reflexive (Self-)Consciousness
Humans and some animals then develop a reflexive (self-)consciousness. In its complex form, it means that we are able to reflect on ourselves as well as our past and future. We can form an image of ourselves and incorporate it into our actions and plans.
"Reflexive consciousness, in its simple forms, developed parallel to the two basic forms of consciousness," explains Newen. "In such cases, conscious experience focuses not on perceiving the environment, but rather on the conscious registration of aspects of oneself."
This includes the state of one's own body, as well as one's perception, sensations, thoughts, and actions. To use one simple example, recognizing oneself in the mirror is a form of reflexive consciousness. Children develop this skill at 18 months, and some animals have been shown to do this as well, such as chimpanzees, dolphins, and magpies. Reflexive conscious experiences – as its core function – makes it possible for us to better integrate into society and coordinate with others.
What Birds Perceive
Gianmarco Maldarelli and Onur Güntürkün show in their article that birds may possess fundamental forms of conscious perception. The researchers highlight three central areas in which birds show remarkable parallels to conscious experience in mammals: sensory consciousness, neurobiological foundations, and accounts of self-consciousness.
Firstly, studies of sensory consciousness indicate that birds not only automatically process stimuli, but subjectively experience them. When pigeons are presented with ambiguous visual stimuli, they shift between various interpretations, similar to humans. Crows have also been shown to possess nerve signals that do not reflect the physical presence of a stimulus, but rather the animal's subjective perception. When a crow sometimes consciously perceives a stimulus and does not at other times, certain nerve cells react precisely according to this internal experience.
Secondly, birds' brains contain functional structures that meet the theoretical requirements of conscious processing, despite their different brain structure. "The avian equivalent to the prefrontal cortex, the NCL, is immensely connected and allows the brain to integrate and flexibly process information," says Güntürkün. "The connectome of the avian forebrain, which presents the entirety of the flows of information between the regions of the brain, shares many similarities with mammals. Birds thus meet many criteria of established theories of consciousness, such as the Global Neuronal Workspace theory."
Thirdly, more recent experiments show that birds may have different types of self-perception. Even though some species of corvids pass the traditional mirror test, other ecologically significant versions of the tests have shown further types of self-consciousness in other bird species. "Experiments indicate that pigeons and chickens differentiate between their reflection in a mirror and a real fellow member of their species, and react to these according to context. This is a sign of situational, basic self-consciousness," says Güntürkün.
The findings suggest that consciousness is an older and more widespread evolutionary phenomenon than had previously been assumed. Birds demonstrate that conscious processing is also possible without a cerebral cortex and that different brain structures can achieve similar functional solutions.
References: "Three types of phenomenal consciousness and their functional roles: unfolding the ALARM theory of consciousness" by Albert Newen and Carlos Montemayor, 12 November 2025, Philosophical Transactions B.
DOI: 10.1098/rstb.2024.0314
"Conscious birds" by Gianmarco Maldarelli and Onur Güntürkün, 12 November 2025, Philosophical Transactions B.
DOI: 10.1098/rstb.2024.0308
News
Oceans Are Struggling To Absorb Carbon As Microplastics Flood Their Waters
New research points to an unexpected way plastic pollution may be influencing Earth’s climate system. A recent study suggests that microscopic plastic pollution is reducing the ocean’s capacity to take in carbon dioxide, a [...]
Molecular Manufacturing: The Future of Nanomedicine – New book from Frank Boehm
This book explores the revolutionary potential of atomically precise manufacturing technologies to transform global healthcare, as well as practically every other sector across society. This forward-thinking volume examines how envisaged Factory@Home systems might enable the cost-effective [...]
New Book! NanoMedical Brain/Cloud Interface – Explorations and Implications
New book from Frank Boehm, NanoappsMedical Inc Founder: This book explores the future hypothetical possibility that the cerebral cortex of the human brain might be seamlessly, safely, and securely connected with the Cloud via [...]
Global Health Care Equivalency in the Age of Nanotechnology, Nanomedicine and Artificial Intelligence
A new book by Frank Boehm, NanoappsMedical Inc. Founder. This groundbreaking volume explores the vision of a Global Health Care Equivalency (GHCE) system powered by artificial intelligence and quantum computing technologies, operating on secure [...]
Miller School Researchers Pioneer Nanovanilloid-Based Brain Cooling for Traumatic Injury
A multidisciplinary team at the University of Miami Miller School of Medicine has developed a breakthrough nanodrug platform that may prove beneficial for rapid, targeted therapeutic hypothermia after traumatic brain injury (TBI). Their work, published in ACS [...]
COVID-19 still claims more than 100,000 US lives each year
Centers for Disease Control and Prevention researchers report national estimates of 43.6 million COVID-19-associated illnesses and 101,300 deaths in the US during October 2022 to September 2023, plus 33.0 million illnesses and 100,800 deaths [...]
Nanomedicine in 2026: Experts Predict the Year Ahead
Progress in nanomedicine is almost as fast as the science is small. Over the last year, we've seen an abundance of headlines covering medical R&D at the nanoscale: polymer-coated nanoparticles targeting ovarian cancer, Albumin recruiting nanoparticles for [...]
Lipid nanoparticles could unlock access for millions of autoimmune patients
Capstan Therapeutics scientists demonstrate that lipid nanoparticles can engineer CAR T cells within the body without laboratory cell manufacturing and ex vivo expansion. The method using targeted lipid nanoparticles (tLNPs) is designed to deliver [...]
The Brain’s Strange Way of Computing Could Explain Consciousness
Consciousness may emerge not from code, but from the way living brains physically compute. Discussions about consciousness often stall between two deeply rooted viewpoints. One is computational functionalism, which holds that cognition can be [...]
First breathing ‘lung-on-chip’ developed using genetically identical cells
Researchers at the Francis Crick Institute and AlveoliX have developed the first human lung-on-chip model using stem cells taken from only one person. These chips simulate breathing motions and lung disease in an individual, [...]
Cell Membranes May Act Like Tiny Power Generators
Living cells may generate electricity through the natural motion of their membranes. These fast electrical signals could play a role in how cells communicate and sense their surroundings. Scientists have proposed a new theoretical [...]
This Viral RNA Structure Could Lead to a Universal Antiviral Drug
Researchers identify a shared RNA-protein interaction that could lead to broad-spectrum antiviral treatments for enteroviruses. A new study from the University of Maryland, Baltimore County (UMBC), published in Nature Communications, explains how enteroviruses begin reproducing [...]
New study suggests a way to rejuvenate the immune system
Stimulating the liver to produce some of the signals of the thymus can reverse age-related declines in T-cell populations and enhance response to vaccination. As people age, their immune system function declines. T cell [...]
Nerve Damage Can Disrupt Immunity Across the Entire Body
A single nerve injury can quietly reshape the immune system across the entire body. Preclinical research from McGill University suggests that nerve injuries may lead to long-lasting changes in the immune system, and these [...]
Fake Science Is Growing Faster Than Legitimate Research, New Study Warns
New research reveals organized networks linking paper mills, intermediaries, and compromised academic journals Organized scientific fraud is becoming increasingly common, ranging from fabricated research to the buying and selling of authorship and citations, according [...]
Scientists Unlock a New Way to Hear the Brain’s Hidden Language
Scientists can finally hear the brain’s quietest messages—unlocking the hidden code behind how neurons think, decide, and remember. Scientists have created a new protein that can capture the incoming chemical signals received by brain [...]















