Antibiotic resistance is a growing concern – from human health to crop survival. A new study successfully uses nanogels to target and almost entirely inhibit the bacteria P. Aeruginosa.
Recently published in Angewandte Chemie, the study demonstrates 99.9 % effective inhibition against P. Aeruginosa, a particularly evasive bacterium.
By combining pathogen-specific sugar ligands with a membrane-disrupting antimicrobial peptide, the system shows strong efficacy against both planktonic bacteria and established biofilms: two environments where conventional antibiotics often fail.
P. aeruginosa is a leading cause of hospital-acquired infections, especially in immunocompromised patients. Its ability to form biofilms enables it to evade antibiotics and immune responses.
In this study, nanogels are presented as a promising workaround to this challenge. Their tunable structures support multifunctionality, making them suitable for carrying therapeutic agents and enabling multivalent interactions that enhance microbial targeting.
The researchers constructed their nanogels using dendritic polyglycerols (dPGs) functionalized with two sugars: fucose (Fuc) and galactose (Gal) ligands. The sugars bind to the P. aeruginosa lectins LecB and LecA, and are then integrated into the antibacterial peptide BMAP-18 (GRFKRFRKKFKKLFKKLS), known for its membrane-disrupting activity.
This framework hopes to break down the protective membrane that enables P. aeruginosa to thrive despite other antibiotics, and then inhibit the bacterial almost completely.
The nanogels were synthesized using photo-induced thiolene crosslinking of norbornene and thiol-bearing dPG macromonomers using inverse nanoprecipitation.
Among several different formulations, NG0.33 (the nanogel formulation with a 33 % macromonomer ratio) exhibited the strongest intrinsic binding to bacteria. The researchers attribute this success to the optimized flexibility, making it the chosen scaffold for further modification.
After conjugation with sugars and BMAP-18, nanogel size increased from 47 nm to about 80 nm, and zeta potential rose from +35 mV to +45 mV, confirming successful functionalization.
Importantly, the nanogels remained structurally stable across infection-relevant pH values (5.0-7.0) for at least five days.
Near Perfect Performance Against Planktonic Cells and Biofilms
The sugar-modified nanogels showed higher affinity for both planktonic and biofilm-associated P. aeruginosa in flow cytometry and fluorescence microscopy assays. Significantly, the results of the study showed that adding BMAP-18 did not interfere with lectin binding.
At just 8 µg/mL, the peptide-sugar nanogels (PNG0.33-Fuc/Gal) inactivated over 99.99 % of planktonic bacteria within 12 hours and maintained continued bactericidal activity for more than 72 hours.
Control experiments also demonstrated that sugar-only nanogels could initially reduce bacterial survival, but bacteria resumed growth over time, highlighting the need for a combined targeting-and-killing strategy.
For biofilms, the same nanogels achieved near-complete matrix removal after 72 hours of co-incubation and reduced the thickness of mature 72-hour biofilms by 65 % after a 12-hour treatment, performance comparable to tobramycin.
More than 99.9 % of the biofilm-embedded P. aeruginosa cells were inactivated, indicating efficient penetration and disruption of the biofilm structures.
Broad-Spectrum Potential and Biocompatibility
The nanogels were also effective in inhibiting other bacterial growth: they achieved approximately 90 % inhibition of E. coli and MRSA at higher doses (32 µg/mL and 16 µg/mL, respectively).
This activity likely reflects the higher natural affinity of galactose for lectins in these bacteria, combined with BMAP-18’s membrane activity.
Biocompatibility tests demonstrated over 80 % fibroblast viability at concentrations up to 1 mg/mL, with no measurable hemolysis, indicating a favorable safety profile for further preclinical exploration.
A Modular Platform for Next-Generation Antimicrobials
By integrating lectin-targeting sugars with a potent antimicrobial peptide, the heteromultivalent nanogels address weaknesses of single-function systems and highlight the advantages of combining selective recognition with sustained bactericidal action.
Their modularity suggests they could be adapted to target other pathogens by varying ligand or peptide components.
Future work will first need to evaluate in vivo performance, as well as manufacturing scalability and expanded ligand-peptide combinations.
As antibiotic resistance continues to rise, such customizable nanogel systems are a compelling first step in anti-infective medicines.
Journal Reference
Yuhang, J.D., et al. (2025, November). Heteromultivalent Nanogels as Highly Potent Inhibitors of Pseudomonas Aeruginosa. Angewandte Chemie International Edition, e13121. DOI: 10.1002/anie.202513121
News
Miller School Researchers Pioneer Nanovanilloid-Based Brain Cooling for Traumatic Injury
A multidisciplinary team at the University of Miami Miller School of Medicine has developed a breakthrough nanodrug platform that may prove beneficial for rapid, targeted therapeutic hypothermia after traumatic brain injury (TBI). Their work, published in ACS [...]
COVID-19 still claims more than 100,000 US lives each year
Centers for Disease Control and Prevention researchers report national estimates of 43.6 million COVID-19-associated illnesses and 101,300 deaths in the US during October 2022 to September 2023, plus 33.0 million illnesses and 100,800 deaths [...]
Nanomedicine in 2026: Experts Predict the Year Ahead
Progress in nanomedicine is almost as fast as the science is small. Over the last year, we've seen an abundance of headlines covering medical R&D at the nanoscale: polymer-coated nanoparticles targeting ovarian cancer, Albumin recruiting nanoparticles for [...]
Lipid nanoparticles could unlock access for millions of autoimmune patients
Capstan Therapeutics scientists demonstrate that lipid nanoparticles can engineer CAR T cells within the body without laboratory cell manufacturing and ex vivo expansion. The method using targeted lipid nanoparticles (tLNPs) is designed to deliver [...]
The Brain’s Strange Way of Computing Could Explain Consciousness
Consciousness may emerge not from code, but from the way living brains physically compute. Discussions about consciousness often stall between two deeply rooted viewpoints. One is computational functionalism, which holds that cognition can be [...]
First breathing ‘lung-on-chip’ developed using genetically identical cells
Researchers at the Francis Crick Institute and AlveoliX have developed the first human lung-on-chip model using stem cells taken from only one person. These chips simulate breathing motions and lung disease in an individual, [...]
Cell Membranes May Act Like Tiny Power Generators
Living cells may generate electricity through the natural motion of their membranes. These fast electrical signals could play a role in how cells communicate and sense their surroundings. Scientists have proposed a new theoretical [...]
This Viral RNA Structure Could Lead to a Universal Antiviral Drug
Researchers identify a shared RNA-protein interaction that could lead to broad-spectrum antiviral treatments for enteroviruses. A new study from the University of Maryland, Baltimore County (UMBC), published in Nature Communications, explains how enteroviruses begin reproducing [...]
New study suggests a way to rejuvenate the immune system
Stimulating the liver to produce some of the signals of the thymus can reverse age-related declines in T-cell populations and enhance response to vaccination. As people age, their immune system function declines. T cell [...]
Nerve Damage Can Disrupt Immunity Across the Entire Body
A single nerve injury can quietly reshape the immune system across the entire body. Preclinical research from McGill University suggests that nerve injuries may lead to long-lasting changes in the immune system, and these [...]
Fake Science Is Growing Faster Than Legitimate Research, New Study Warns
New research reveals organized networks linking paper mills, intermediaries, and compromised academic journals Organized scientific fraud is becoming increasingly common, ranging from fabricated research to the buying and selling of authorship and citations, according [...]
Scientists Unlock a New Way to Hear the Brain’s Hidden Language
Scientists can finally hear the brain’s quietest messages—unlocking the hidden code behind how neurons think, decide, and remember. Scientists have created a new protein that can capture the incoming chemical signals received by brain [...]
Does being infected or vaccinated first influence COVID-19 immunity?
A new study analyzing the immune response to COVID-19 in a Catalan cohort of health workers sheds light on an important question: does it matter whether a person was first infected or first vaccinated? [...]
We May Never Know if AI Is Conscious, Says Cambridge Philosopher
As claims about conscious AI grow louder, a Cambridge philosopher argues that we lack the evidence to know whether machines can truly be conscious, let alone morally significant. A philosopher at the University of [...]
AI Helped Scientists Stop a Virus With One Tiny Change
Using AI, researchers identified one tiny molecular interaction that viruses need to infect cells. Disrupting it stopped the virus before infection could begin. Washington State University scientists have uncovered a method to interfere with a key [...]
Deadly Hospital Fungus May Finally Have a Weakness
A deadly, drug-resistant hospital fungus may finally have a weakness—and scientists think they’ve found it. Researchers have identified a genetic process that could open the door to new treatments for a dangerous fungal infection [...]















