In a recent study published in Nature Immunology, a team of researchers from the United States used non-human primate models to compare the protection conferred by an intramuscular booster dose of the bivalent messenger ribonucleic acid (mRNA) coronavirus disease 2019 (COVID-19) vaccine with that provided by a booster dose of a mucosal bivalent adenoviral vector vaccine delivered through an aerosol device or intranasal route.
Background
The rapidly developed COVID-19 vaccines were successful in limiting the severity and transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections, and the intramuscular booster doses continue to confer protection against high levels of morbidity and hospitalization.
However, studies have shown that the efficacy of intramuscularly administered bivalent mRNA vaccines vane after approximately four months, while breakthrough SARS-CoV-2 infections continue to occur.
Factors such as age, immunocompromised conditions, and post-acute sequelae could influence innate immunity levels and vaccine response, increasing the probability of breakthrough infections.
Vaccines that can prevent breakthrough infections would be effective in lowering the transmission levels and preventing the emergence of novel SARS-CoV-2 variants.
A mucosal vaccine, administered intranasally, could limit the transmission of SARS-CoV-2 by boosting the plasma cells and memory B cells in the lymphoid tissue associated with the mucosa and increasing the immune responses at the site of the infection.
About the study
In the present study, the researchers used Macaca mulatta or rhesus macaques to investigate the protective immune responses elicited by a mucosal bivalent adenoviral vector vaccine containing stabilized spike protein from the ancestral Wuhan strain and the Omicron BA.5 variant of SARS-CoV-2.
They compared these immune responses against those elicited by an intramuscular booster dose of a bivalent mRNA vaccine encoding the spike proteins of the same two variants.
Although the inflammation and pathology due to severe disease in humans are not completely recapitulated in non-human primate models, studies have shown that the virus readouts and immune responses observed in non-human primate models can be used to predict the clinical outcomes for Omicron infections in humans.
The adenoviral vector vaccine used in the study was the ChAd-SARS-CoV-2-S vaccine, which is currently being administered in the form of nasal drops in India under the name iNCOVACC. Viral vector vaccines using adenovirus, Newcastle disease virus, or parainfluenza virus can elicit immune responses at the site of the infection, making these vaccines an ideal candidate for a mucosal, intranasally administered booster dose.
The rhesus macaques in the study were primed with two intramuscular doses of an mRNA vaccine encoding the spike protein from the ancestral Wuhan strain.
Seven months after they were primed, one group of macaques was administered with the bivalent ChAd-SARS-CoV-2-S vaccine through an aerosol device, and the vaccine was delivered to the lower and upper airways.
A second group was administered the vaccine intranasally in the form of a mist using a clinical sprayer. In contrast, a comparison group was intramuscularly administered a booster dose of the bivalent mRNA vaccine.
The protection conferred by the mucosal adenoviral vector vaccine administered through aerosol and intranasal routes and the intramuscular booster dose of the bivalent mRNA vaccine were compared by challenging the animals with the XBB.1.16 strain of the virus four and a half months after the booster doses were administered.
Results
The study found that the viral replication in the lungs and the nose of the animals that were administered the mucosal adenoviral vector vaccine against SARS-CoV-2 was minimal for the animals in both the aerosol and intranasal administration groups.
In contrast, the animals that were intramuscularly administered the booster dose of the bivalent mRNA vaccine showed lower levels of viral replication only in the lower airways.
The mucosal vaccine also resulted in durable immunoglobulin (Ig) A and IgG responses in the airways and activated B cells specific for the spike protein in the lungs, which was not observed in the case of the intramuscular bivalent mRNA vaccine booster dose.
The study found that the aerosolized delivery of the mucosal vaccine elicited broad mucosal immunity in multiple respiratory compartments, which could rapidly suppress the replication of SARS-CoV-2.
In comparison, the intranasally administered booster dose of the same vaccine could only boost the IgA titers in the airway, which could prevent the local replication of the virus but could not inhibit viral replication in the lungs as effectively as the aerosolized booster dose or elicit memory B cells specific to the spike protein.
Conclusions
Overall, the findings showed that a booster dose of mucosal adenoviral vector vaccine against SARS-CoV-2, administered as an aerosol, was most effective in controlling viral replication in the lungs and the nose.
The IgA titers in the airways were indicative of the protection in the upper respiratory compartments. In contrast, memory B cell and T cell responses, as well as IgA and IgG titers, correlated with the protection conferred in the lower airways.
- Gagne, M., Flynn, B.J., Andrew, S.F., Marquez, J., Flebbe, D.R., Mychalowych, A., Lamb, E., DavisGardner, M.E., Burnett, M.R., Serebryannyy, Leonid A, Lin, B.C., Ziff, Z.E., Maule, E., Carroll, R., Naisan, M., Jethmalani, Y., Pessaint, L., Todd, J.M., DoriaRose, N.A. & Case, J.B. (2024). Mucosal adenovirus vaccine boosting elicits IgA and durably prevents XBB.1.16 infection in nonhuman primates. Nature Immunology. doi:10.1038/s41590024019515. https://www.nature.com/articles/s41590-024-01951-5
News
AI Helped Scientists Stop a Virus With One Tiny Change
Using AI, researchers identified one tiny molecular interaction that viruses need to infect cells. Disrupting it stopped the virus before infection could begin. Washington State University scientists have uncovered a method to interfere with a key [...]
Deadly Hospital Fungus May Finally Have a Weakness
A deadly, drug-resistant hospital fungus may finally have a weakness—and scientists think they’ve found it. Researchers have identified a genetic process that could open the door to new treatments for a dangerous fungal infection [...]
Fever-Proof Bird Flu Variant Could Fuel the Next Pandemic
Bird flu viruses present a significant risk to humans because they can continue replicating at temperatures higher than a typical fever. Fever is one of the body’s main tools for slowing or stopping viral [...]
What could the future of nanoscience look like?
Society has a lot to thank for nanoscience. From improved health monitoring to reducing the size of electronics, scientists’ ability to delve deeper and better understand chemistry at the nanoscale has opened up numerous [...]
Scientists Melt Cancer’s Hidden “Power Hubs” and Stop Tumor Growth
Researchers discovered that in a rare kidney cancer, RNA builds droplet-like hubs that act as growth control centers inside tumor cells. By engineering a molecular switch to dissolve these hubs, they were able to halt cancer [...]
Platelet-inspired nanoparticles could improve treatment of inflammatory diseases
Scientists have developed platelet-inspired nanoparticles that deliver anti-inflammatory drugs directly to brain-computer interface implants, doubling their effectiveness. Scientists have found a way to improve the performance of brain-computer interface (BCI) electrodes by delivering anti-inflammatory drugs directly [...]
After 150 years, a new chapter in cancer therapy is finally beginning
For decades, researchers have been looking for ways to destroy cancer cells in a targeted manner without further weakening the body. But for many patients whose immune system is severely impaired by chemotherapy or radiation, [...]
Older chemical libraries show promise for fighting resistant strains of COVID-19 virus
SARS‑CoV‑2, the virus that causes COVID-19, continues to mutate, with some newer strains becoming less responsive to current antiviral treatments like Paxlovid. Now, University of California San Diego scientists and an international team of [...]
Lower doses of immunotherapy for skin cancer give better results, study suggests
According to a new study, lower doses of approved immunotherapy for malignant melanoma can give better results against tumors, while reducing side effects. This is reported by researchers at Karolinska Institutet in the Journal of the National [...]
Researchers highlight five pathways through which microplastics can harm the brain
Microplastics could be fueling neurodegenerative diseases like Alzheimer's and Parkinson's, with a new study highlighting five ways microplastics can trigger inflammation and damage in the brain. More than 57 million people live with dementia, [...]
Tiny Metal Nanodots Obliterate Cancer Cells While Largely Sparing Healthy Tissue
Scientists have developed tiny metal-oxide particles that push cancer cells past their stress limits while sparing healthy tissue. An international team led by RMIT University has developed tiny particles called nanodots, crafted from a metallic compound, [...]
Gold Nanoclusters Could Supercharge Quantum Computers
Researchers found that gold “super atoms” can behave like the atoms in top-tier quantum systems—only far easier to scale. These tiny clusters can be customized at the molecular level, offering a powerful, tunable foundation [...]
A single shot of HPV vaccine may be enough to fight cervical cancer, study finds
WASHINGTON -- A single HPV vaccination appears just as effective as two doses at preventing the viral infection that causes cervical cancer, researchers reported Wednesday. HPV, or human papillomavirus, is very common and spread [...]
New technique overcomes technological barrier in 3D brain imaging
Scientists at the Swiss Light Source SLS have succeeded in mapping a piece of brain tissue in 3D at unprecedented resolution using X-rays, non-destructively. The breakthrough overcomes a long-standing technological barrier that had limited [...]
Scientists Uncover Hidden Blood Pattern in Long COVID
Researchers found persistent microclot and NET structures in Long COVID blood that may explain long-lasting symptoms. Researchers examining Long COVID have identified a structural connection between circulating microclots and neutrophil extracellular traps (NETs). The [...]
This Cellular Trick Helps Cancer Spread, but Could Also Stop It
Groups of normal cbiells can sense far into their surroundings, helping explain cancer cell migration. Understanding this ability could lead to new ways to limit tumor spread. The tale of the princess and the [...]















