Researchers at Albert Einstein College of Medicine have found that the virus responsible for chikungunya fever can spread directly from cell to cell—perhaps solving the longstanding mystery of how the virus, now emerging as a major health threat, can manage to escape antibodies circulating in the bloodstream.
A possible explanation for prolonged infections
“Previously, chikungunya virus was thought to spread in the body by infecting a cell, replicating within that cell, and then sending new copies of the virus into the bloodstream that then infect new cells,” said study leader Margaret Kielian, Ph.D., professor of cell biology and the Samuel H. Golding Chair in Microbiology at Einstein.
“However, we’ve found that the virus can also hijack a host cell’s cytoskeleton—the proteins that support cells and maintain their shape. The virus causes the infected cell to send out long thin extensions that make contact with uninfected neighboring cells, enabling the virus to safely and efficiently travel from one cell to another.”
Dr. Kielian and her colleagues have named these virus-induced structures intercellular long extensions, or ILEs. “This mode of viral transmission may not only shield some copies of the virus from the host’s immune response, but it may also explain why symptoms of chikungunya infection can persist for many months or years,” added first author Peiqi Yin, Ph.D., a postdoctoral fellow in Dr. Kielian’s lab.
In addition to fever, chikungunya infections often lead to chronic and debilitating arthritis. The virus is spread to humans by the bite of infected mosquitoes, which become infected by feeding on people who already have the virus.
Over the past 15 years, chikungunya virus has become an important and increasingly widespread human pathogen. Multiple outbreaks have caused millions of human infections in numerous areas including the Americas, Africa, Asia, Europe, and the Caribbean. The National Institute of Allergy and Infectious Diseases lists chikungunya virus as a Category B Pathogen, the second-highest priority for organisms posing threats to national security and public health.
Confirming a cell structure’s role
Dr. Kielian and colleagues discovered the presence of ILEs in chikungunya-infected cells several years ago, but it wasn’t clear whether the structures facilitated cell-to-cell viral transmission. The study, titled “Chikungunya virus cell-to-cell transmission is mediated by intercellular extensions in vitro and in vivo,” was designed to answer that question.
The first part of the study involved the use of cultured mouse cells. The researchers exposed the cells to chikungunya virus that expressed a fluorescent reporter protein, allowing them to observe that infectious virus particles were indeed being transmitted from cell to cell via ILEs. Cell-to-cell transmission occurred even in the presence of high quantities of neutralizing antibodies that were added to the culture medium.
To confirm this mode of cell-to-cell transmission in living animals, the researchers studied chikungunya infection in mice. Mice that were first inoculated with neutralizing antibodies and were then directly injected with chikungunya virus did not become infected. However, antibody-treated mice that were then injected with virus-infected cells (rather than just the virus) did develop chikungunya infections that were resistant to the neutralizing antibodies.
“Together, these studies show that ILEs shield chikungunya virus from neutralizing antibodies and promote intercellular virus transmission, both in vitro and in vivo,” said Dr. Yin. The mouse studies were conducted by Thomas E. Morrison, Ph.D., and his group at the University of Colorado School of Medicine in Aurora.
In a final set of studies, the researchers determined that certain antiviral antibodies were able to block ILEs from forming and to prevent cell-to-cell transmission. “If we can generate the production of such antibodies in human patients, or develop other methods to stop ILE formation, that could be especially helpful in combatting the chronic symptoms of chikungunya infection,” said Dr. Kielian. “We’re currently studying different ways to do this.”
News
Scientists Unlock a New Way to Hear the Brain’s Hidden Language
Scientists can finally hear the brain’s quietest messages—unlocking the hidden code behind how neurons think, decide, and remember. Scientists have created a new protein that can capture the incoming chemical signals received by brain [...]
Does being infected or vaccinated first influence COVID-19 immunity?
A new study analyzing the immune response to COVID-19 in a Catalan cohort of health workers sheds light on an important question: does it matter whether a person was first infected or first vaccinated? [...]
We May Never Know if AI Is Conscious, Says Cambridge Philosopher
As claims about conscious AI grow louder, a Cambridge philosopher argues that we lack the evidence to know whether machines can truly be conscious, let alone morally significant. A philosopher at the University of [...]
AI Helped Scientists Stop a Virus With One Tiny Change
Using AI, researchers identified one tiny molecular interaction that viruses need to infect cells. Disrupting it stopped the virus before infection could begin. Washington State University scientists have uncovered a method to interfere with a key [...]
Deadly Hospital Fungus May Finally Have a Weakness
A deadly, drug-resistant hospital fungus may finally have a weakness—and scientists think they’ve found it. Researchers have identified a genetic process that could open the door to new treatments for a dangerous fungal infection [...]
Fever-Proof Bird Flu Variant Could Fuel the Next Pandemic
Bird flu viruses present a significant risk to humans because they can continue replicating at temperatures higher than a typical fever. Fever is one of the body’s main tools for slowing or stopping viral [...]
What could the future of nanoscience look like?
Society has a lot to thank for nanoscience. From improved health monitoring to reducing the size of electronics, scientists’ ability to delve deeper and better understand chemistry at the nanoscale has opened up numerous [...]
Scientists Melt Cancer’s Hidden “Power Hubs” and Stop Tumor Growth
Researchers discovered that in a rare kidney cancer, RNA builds droplet-like hubs that act as growth control centers inside tumor cells. By engineering a molecular switch to dissolve these hubs, they were able to halt cancer [...]
Platelet-inspired nanoparticles could improve treatment of inflammatory diseases
Scientists have developed platelet-inspired nanoparticles that deliver anti-inflammatory drugs directly to brain-computer interface implants, doubling their effectiveness. Scientists have found a way to improve the performance of brain-computer interface (BCI) electrodes by delivering anti-inflammatory drugs directly [...]
After 150 years, a new chapter in cancer therapy is finally beginning
For decades, researchers have been looking for ways to destroy cancer cells in a targeted manner without further weakening the body. But for many patients whose immune system is severely impaired by chemotherapy or radiation, [...]
Older chemical libraries show promise for fighting resistant strains of COVID-19 virus
SARS‑CoV‑2, the virus that causes COVID-19, continues to mutate, with some newer strains becoming less responsive to current antiviral treatments like Paxlovid. Now, University of California San Diego scientists and an international team of [...]
Lower doses of immunotherapy for skin cancer give better results, study suggests
According to a new study, lower doses of approved immunotherapy for malignant melanoma can give better results against tumors, while reducing side effects. This is reported by researchers at Karolinska Institutet in the Journal of the National [...]
Researchers highlight five pathways through which microplastics can harm the brain
Microplastics could be fueling neurodegenerative diseases like Alzheimer's and Parkinson's, with a new study highlighting five ways microplastics can trigger inflammation and damage in the brain. More than 57 million people live with dementia, [...]
Tiny Metal Nanodots Obliterate Cancer Cells While Largely Sparing Healthy Tissue
Scientists have developed tiny metal-oxide particles that push cancer cells past their stress limits while sparing healthy tissue. An international team led by RMIT University has developed tiny particles called nanodots, crafted from a metallic compound, [...]
Gold Nanoclusters Could Supercharge Quantum Computers
Researchers found that gold “super atoms” can behave like the atoms in top-tier quantum systems—only far easier to scale. These tiny clusters can be customized at the molecular level, offering a powerful, tunable foundation [...]
A single shot of HPV vaccine may be enough to fight cervical cancer, study finds
WASHINGTON -- A single HPV vaccination appears just as effective as two doses at preventing the viral infection that causes cervical cancer, researchers reported Wednesday. HPV, or human papillomavirus, is very common and spread [...]















