| You know you have a skeleton, but did you know that your cells have skeletons, too? Cellular skeletons, or cytoskeletons, are shapeshifting networks of tiny protein filaments, enabling cells to propel themselves, carry cargo, and divide. | |
| Now, an interdisciplinary team of Caltech researchers has designed a way to study and manipulate the cytoskeleton in test tubes in the lab. Understanding how cells control movement could one day lead to tiny, bioinspired robots for therapeutic applications. The work also contributes to the development of new tools for manipulating fluids on very small scales relevant to molecular biology and chemistry. | |
| The work is described in a paper appearing in the journal Nature (“Controlling organization and forces in active matter through optically defined boundaries”). | |
| The building blocks of the cellular cytoskeleton are thin, tube-like filaments called microtubules that can form together into three-dimensional scaffolds. Each microtubule is 1,000 times thinner than a human hair and only about 10 micrometers long (about 1,000 times smaller than a common black ant). Along with motor proteins that power movement, these incredibly small structures combine to propel the relatively large cell–like ants steering and powering a car. |
| In previous studies, researchers have taken these molecules out of the cell and put them into test tubes, where the tubules and motor proteins spontaneously group together to organize themselves into star-shaped structures called asters. How asters in a test tube are related to a cytoskeleton powering cell movement, however, is still unclear. Moreover, the collective microtubule organization demonstrated by aster formation involves interacting forces that are not entirely understood. | |
| “What we wanted to know was: how do you get from these spontaneously forming aster structures in the lab, to a cell controlling its movement? And, how can we control these molecules the way a cell does?” says graduate student Tyler Ross, first author on the study. | |
| Led by Ross, a team of Caltech researchers explored how to manipulate the component filaments and motor proteins outside of the cell’s natural environment. In test tubes, they linked motor proteins to light-activated proteins that are naturally found in plants, so that the tubules would only organize into asters when light was shining on them. In this way, the researchers could control when and where asters would form by projecting different patterns of light, enabling them to develop theories about the physical mechanisms underlying aster formation. | |
| Controlling the asters not only allowed for the study of their formation but also enabled the team to build things out of the structures. Ross developed simple procedures of light patterns to place, move, and merge asters of various sizes. The technique offers a way to manipulate structures and study fluid dynamics at a miniscule length scale that is usually difficult to work at; fluids exhibit tricky behaviors at such small volumes. | |
| “Generally, it’s really difficult to manipulate fluids and structures on this length scale. But this is the scale that we’re most interested in for studying cells and chemistry; all of molecular biology works on this scale,” says Ross. “Our light-based system allows us to dynamically manipulate our system. We could look through a microscope and say, ‘Okay we have enough over here, let’s start routing things over there,’ and change the light pattern accordingly. We could use aster structures in such a way that they could stir and mix solutions at very small length scales.” |
Image Credit: Caltech
News This Week
Tiny Metal Nanodots Obliterate Cancer Cells While Largely Sparing Healthy Tissue
Scientists have developed tiny metal-oxide particles that push cancer cells past their stress limits while sparing healthy tissue. An international team led by RMIT University has developed tiny particles called nanodots, crafted from a metallic compound, [...]
Gold Nanoclusters Could Supercharge Quantum Computers
Researchers found that gold “super atoms” can behave like the atoms in top-tier quantum systems—only far easier to scale. These tiny clusters can be customized at the molecular level, offering a powerful, tunable foundation [...]
A single shot of HPV vaccine may be enough to fight cervical cancer, study finds
WASHINGTON -- A single HPV vaccination appears just as effective as two doses at preventing the viral infection that causes cervical cancer, researchers reported Wednesday. HPV, or human papillomavirus, is very common and spread [...]
New technique overcomes technological barrier in 3D brain imaging
Scientists at the Swiss Light Source SLS have succeeded in mapping a piece of brain tissue in 3D at unprecedented resolution using X-rays, non-destructively. The breakthrough overcomes a long-standing technological barrier that had limited [...]
Scientists Uncover Hidden Blood Pattern in Long COVID
Researchers found persistent microclot and NET structures in Long COVID blood that may explain long-lasting symptoms. Researchers examining Long COVID have identified a structural connection between circulating microclots and neutrophil extracellular traps (NETs). The [...]
This Cellular Trick Helps Cancer Spread, but Could Also Stop It
Groups of normal cbiells can sense far into their surroundings, helping explain cancer cell migration. Understanding this ability could lead to new ways to limit tumor spread. The tale of the princess and the [...]
New mRNA therapy targets drug-resistant pneumonia
Bacteria that multiply on surfaces are a major headache in health care when they gain a foothold on, for example, implants or in catheters. Researchers at Chalmers University of Technology in Sweden have found [...]
Current Heart Health Guidelines Are Failing To Catch a Deadly Genetic Killer
New research reveals that standard screening misses most people with a common inherited cholesterol disorder. A Mayo Clinic study reports that current genetic screening guidelines overlook most people who have familial hypercholesterolemia, an inherited disorder that [...]
Scientists Identify the Evolutionary “Purpose” of Consciousness
Summary: Researchers at Ruhr University Bochum explore why consciousness evolved and why different species developed it in distinct ways. By comparing humans with birds, they show that complex awareness may arise through different neural architectures yet [...]
Novel mRNA therapy curbs antibiotic-resistant infections in preclinical lung models
Researchers at the Icahn School of Medicine at Mount Sinai and collaborators have reported early success with a novel mRNA-based therapy designed to combat antibiotic-resistant bacteria. The findings, published in Nature Biotechnology, show that in [...]
New skin-permeable polymer delivers insulin without needles
A breakthrough zwitterionic polymer slips through the skin’s toughest barriers, carrying insulin deep into tissue and normalizing blood sugar, offering patients a painless alternative to daily injections. A recent study published in the journal Nature examines [...]
Multifunctional Nanogels: A Breakthrough in Antibacterial Strategies
Antibiotic resistance is a growing concern - from human health to crop survival. A new study successfully uses nanogels to target and almost entirely inhibit the bacteria P. Aeruginosa. Recently published in Angewandte Chemie, the study [...]
Nanoflowers rejuvenate old and damaged human cells by replacing their mitochondria
Biomedical researchers at Texas A&M University may have discovered a way to stop or even reverse the decline of cellular energy production—a finding that could have revolutionary effects across medicine. Dr. Akhilesh K. Gaharwar [...]
The Stunning New Push to Protect the Invisible 99% of Life
Scientists worldwide have joined forces to build the first-ever roadmap for conserving Earth’s vast invisible majority—microbes. Their new IUCN Specialist Group reframes conservation by elevating microbial life to the same urgency as plants and [...]
Scientists Find a Way to Help the Brain Clear Alzheimer’s Plaques Naturally
Scientists have discovered that the brain may have a built-in way to fight Alzheimer’s. By activating a protein called Sox9, researchers were able to switch on star-shaped brain cells known as astrocytes and turn them into [...]
Vision can be rebooted in adults with amblyopia, study suggests
Temporarily anesthetizing the retina briefly reverts the activity of the visual system to that observed in early development and enables growth of responses to the amblyopic eye, new research shows. In the common vision [...]















