- CAR-T therapy can cure terminally ill cancer patients but it is prohibitively expensive, costing hundreds of thousands of dollars.
- Leveraging recent advances in chip technology scientists can create and mass produce small machines to re-engineer the immune system.
- But the scientific community needs public-private partnerships to ensure this medical breakthrough becomes accessible to everyone.
After suffering 16 months of chemotherapy for her leukaemia, treatment options for six-year-old Emily Whitehead had run out. Her parents began to fear the worst. As a last-ditch effort, the University of Pennsylvania enrolled Emily in a clinical trial that involved reprogramming her immune cells to destroy her cancer. The results were phenomenal. Emily not only survived, but nine years later she is a healthy teenager with no cancer.
Behind Emily’s recovery is CAR-T (Chimeric Antigen Receptor T cells ) a cell-based therapy that has become a revolutionary weapon in the treatment of previously incurable blood cancers.
CAR-T cell therapy genetically modifies a patient’s immune cells to hunt and kill cancer cells. It is a form of personalized immunotherapy that can provide lasting remissions, even to terminally ill patients who have just months to live and for whom classic treatment options have not worked.
More than 400 clinical trials of CAR-T therapies are currently in progress. Their impact could be enormous. According to the World Health Organization, cancer causes one in six deaths worldwide. Personalized cell therapy has the potential to save millions of lives. Preliminary data even suggests that engineering immune cells may one day be used to treat heart failure, autoimmune diseases, diabetes and HIV.
Why does CAR-T cost so much?
But unit economics are hobbling the rollout of CAR-T to the full number of patients whose lives it could save. The treatment alone can cost up to $475,000 and US hospitals can charge as much as $1.5 million to administer it, once ancillary costs are taken into account.
So why this high price? With conventional therapies, drug makers get economies of scale: the more they produce, the cheaper each dose becomes.
But CAR-T is tailor-made for each patient, and behind every treatment lies a highly sophisticated process, which is time-consuming and brutally expensive.
The patient’s immune cells are collected, purified in various steps, genetically modified, formulated at the right dose and reinfused. This complex manufacturing process requires shipments to different labs and frequent manual interventions, which introduce the risk of human error and potentially life-threatening side effects. Compounded by the fact that CAR-T consists of living cells that vary in potency, manufacturers need to continuously test results throughout the process.
The result is a production time that can take weeks, and an unaffordable price. Unless these economics change, this treatment will not reach patients whose lives it could save – it will only reach those privileged enough to afford it.
Technology holds the key to reducing costs
There is, however, hope. The most recent insights in nanotechnology, artificial intelligence (AI), biosensors, and the Internet of Things could help overcome the current roadblocks in making personalized cell therapies affordable.
The solution to democratize these therapies lies in automating their manufacturing process, which would reduce the cost, time, and risks significantly. This will require several engineering breakthroughs but is technically possible.
Recent advances in chip technology provide inspiration. The modern world’s insatiable demand for better computers, gaming consoles, and smartphones has resulted in the extreme miniaturization of transistors – the components which drive technology’s processing capacity – as more transistors on smaller circuits enables new and stronger technological abilities…..

News
Study Delivers Cancer Drugs Directly to the Tumor Nucleus
A new peptide-based nanotube treatment sneaks chemo into drug-resistant cancer cells, providing a unique workaround to one of oncology’s toughest hurdles. CiQUS researchers have developed a novel molecular strategy that allows a chemotherapy drug to [...]
Scientists Begin $14.2 Million Project To Decode the Body’s “Hidden Sixth Sense”
An NIH-supported initiative seeks to unravel how the nervous system tracks and regulates the body’s internal organs. How does your brain recognize when it’s time to take a breath, when your blood pressure has [...]
Scientists Discover a New Form of Ice That Shouldn’t Exist
Researchers at the European XFEL and DESY are investigating unusual forms of ice that can exist at room temperature when subjected to extreme pressure. Ice comes in many forms, even when made of nothing but water [...]
Nobel-winning, tiny ‘sponge crystals’ with an astonishing amount of inner space
The 2025 Nobel Prize in chemistry was awarded to Richard Robson, Susumu Kitagawa and Omar Yaghi on Oct. 8, 2025, for the development of metal-organic frameworks, or MOFs, which are tunable crystal structures with extremely [...]
Harnessing Green-Synthesized Nanoparticles for Water Purification
A new review reveals how plant- and microbe-derived nanoparticles can power next-gen water disinfection, delivering cleaner, safer water without the environmental cost of traditional treatments. A recent review published in Nanomaterials highlights the potential of green-synthesized nanomaterials (GSNMs) in [...]
Brainstem damage found to be behind long-lasting effects of severe Covid-19
Damage to the brainstem - the brain's 'control center' - is behind long-lasting physical and psychiatric effects of severe Covid-19 infection, a study suggests. Using ultra-high-resolution scanners that can see the living brain in [...]
CT scan changes over one year predict outcomes in fibrotic lung disease
Researchers at National Jewish Health have shown that subtle increases in lung scarring, detected by an artificial intelligence-based tool on CT scans taken one year apart, are associated with disease progression and survival in [...]
AI Spots Hidden Signs of Disease Before Symptoms Appear
Researchers suggest that examining the inner workings of cells more closely could help physicians detect diseases earlier and more accurately match patients with effective therapies. Researchers at McGill University have created an artificial intelligence tool capable of uncovering [...]
Breakthrough Blood Test Detects Head and Neck Cancer up to 10 Years Before Symptoms
Mass General Brigham’s HPV-DeepSeek test enables much earlier cancer detection through a blood sample, creating a new opportunity for screening HPV-related head and neck cancers. Human papillomavirus (HPV) is responsible for about 70% of [...]
Study of 86 chikungunya outbreaks reveals unpredictability in size and severity
The symptoms come on quickly—acute fever, followed by debilitating joint pain that can last for months. Though rarely fatal, the chikungunya virus, a mosquito-borne illness, can be particularly severe for high-risk individuals, including newborns and older [...]
Tiny Fat Messengers May Link Obesity to Alzheimer’s Plaque Buildup
Summary: A groundbreaking study reveals how obesity may drive Alzheimer’s disease through tiny messengers called extracellular vesicles released from fat tissue. These vesicles carry lipids that alter how quickly amyloid-β plaques form, a hallmark of [...]
Ozone exposure weakens lung function and reshapes the oral microbiome
Scientists reveal that short-term ozone inhalation doesn’t just harm the lungs; it reshapes the microbes in your mouth, with men facing the greatest risks. Ozone is a toxic environmental pollutant with wide-ranging effects on [...]
New study reveals molecular basis of Long COVID brain fog
Even though many years have passed since the start of the COVID-19 pandemic, the effects of infection with SARS-CoV-2 are not completely understood. This is especially true for Long COVID, a chronic condition that [...]
Scientists make huge Parkinson’s breakthrough as they discover ‘protein trigger’
Scientists have, for the first time, directly visualised the protein clusters in the brain believed to trigger Parkinson's disease, bringing them one step closer to potential treatments. Parkinson's is a progressive incurable neurological disorder [...]
Alpha amino acids’ stability may explain their role as early life’s protein building blocks
A new study from the Hebrew University of Jerusalem published in the Proceedings of the National Academy of Sciences sheds light on one of life's greatest mysteries: why biology is based on a very specific set [...]
3D bioprinting advances enable creation of artificial blood vessels with layered structures
To explore possible treatments for various diseases, either animal models or human cell cultures are usually used first; however, animal models do not always mimic human diseases well, and cultures are far removed [...]