Summary: New research reveals that aging isn’t just a local cellular process—it can spread throughout the body via the bloodstream. A redox-sensitive protein called ReHMGB1, secreted by senescent cells, was found to trigger aging features in distant tissues, impairing regeneration and muscle function.
Blocking ReHMGB1 with antibodies in mice reduced cellular aging markers and improved physical performance after injury. These findings identify a key molecular messenger of systemic aging and offer a promising therapeutic target to slow or reverse age-related decline.
Key Facts:
- Aging Spreads Through Blood: ReHMGB1 transmits senescence signals from one tissue to another.
- Reversible Damage: Blocking HMGB1 improved tissue repair and function in aging mice.
- Therapeutic Potential: Targeting circulating HMGB1 could help treat age-related diseases.
Source: Korea University College of Medicine
For the first time in the world, a Korean research team discovered how cellular aging can spread systemically through the bloodstream—offering new insights and a potential therapeutic strategy to combat aging-related decline.
Professor Ok Hee Jeon’s research group at the Department of Convergence Medicine, Korea University’s College of Medicine, discovered that High Mobility Group Box 1 (HMGB1),a key extracellular senescence-associated secretory phenotype (SASP) factor, plays a critical role in transmitting senescence from aging cells to distant tissues.
Senescent cells are known to secrete pro-inflammatory factors and signaling molecules—collectively known as SASP—which induce paracrine senescence in surrounding cells.
Over time, these senescent cells accumulate in various tissues, impairing regenerative capacity and contributing to tissue dysfunction. However, the mechanism by which senescence spreads systemically remained unclear.
In their latest study published in Metabolism – Clinical and Experimental (Impact Factor 10.9, top 4.6% in endocrinology and metabolism), Professor Jeon’s team provides the first evidence that reduced HMGB1 (ReHMGB1), a redox-sensitive isoform of HMGB1, circulates through the bloodstream and induces senescence in remote tissues.
Using both in vitro and in vivo models, the researchers demonstrated that extracellular ReHMGB1, but not its oxidized form (OxHMGB1), robustly induces senescence-like features in multiple human cell types—including fibroblasts, renal epithelial cells, and skeletal muscle cells.
Mice systemically treated with ReHMGB1 exhibited elevated senescence markers (p21, p16), increased SASP factor expression, and impaired muscle function.
Furthermore, in a muscle injury model in middle-aged mice, administration of anti-HMGB1 antibodies not only reduced senescence markers but also enhanced muscle regeneration and improved physical performance.
These findings highlight the therapeutic potential of targeting extracellular HMGB1 to reverse or mitigate age-related tissue dysfunction.
“This study reveals that aging signals are not confined to individual cells but can be systemically transmitted via the blood, with ReHMGB1 acting as a key driver,” said Professor Jeon.
“By blocking this pathway, we were able to restore tissue regenerative capacity, suggesting a promising strategy to treat aging-related diseases.”
Funding: This research was supported by the Myokine Research Center (MRC) and the Mid-sized Research Support Project of the Ministry of Science and ICT. and was conducted in collaboration with internationally recognized experts in aging biology, including Professor Irina Conboy of UC Berkeley and Professor Christopher Wiley of Turfts University.
Abstract
Propagation of senescent phenotypes by extracellular HMGB1 is dependent on its redox state
Background & purpose
Cellular senescence spreads systemically through blood circulation, but its mechanisms remain unclear. High mobility group box 1 (HMGB1), a multifunctional senescence-associated secretory phenotype (SASP) factor, exists in various redox states. Here, we investigate the role of redox-sensitive HMGB1 (ReHMGB1) in driving paracrine and systemic senescence.
Methods
We applied the paracrine senescence cultured model to evaluate the effect of ReHMGB1 on cellular senescence. Each redox state of HMGB1 was treated extracellularly to assess systemic senescence both in vitro and in vivo. Senescence was determined by SA-β-gal & EdU staining, p16INK4a and p21 expression, RT-qPCR, and Western blot methods. Bulk RNA sequencing was performed to investigate ReHMGB1-driven transcriptional changes and underlying pathways.
Cytokine arrays characterized SASP profiles from ReHMGB1-treated cells. In vivo, young mice were administered ReHMGB1 systemically to induce senescence across multiple tissues. A muscle injury model in middle-aged mice was used to assess the therapeutic efficacy of HMGB1 blockade.
Results
Extracellular ReHMGB1, but not its oxidized form, robustly induced senescence-like phenotypes across multiple cell types and tissues. Transcriptomic analysis revealed activation of RAGE-mediated JAK/STAT and NF-κB pathways, driving SASP expression and cell cycle arrest.
Cytokine profiling confirmed paracrine senescence features induced by ReHMGB1. ReHMGB1 administration elevated senescence markers in vivo, while HMGB1 inhibition reduced senescence, attenuated systemic inflammation, and enhanced muscle regeneration.
Conclusion
ReHMGB1 is a redox-dependent pro-geronic factor driving systemic senescence. Targeting extracellular HMGB1 may offer therapeutic potential for preventing aging-related pathologies.

News
New study reveals molecular basis of Long COVID brain fog
Even though many years have passed since the start of the COVID-19 pandemic, the effects of infection with SARS-CoV-2 are not completely understood. This is especially true for Long COVID, a chronic condition that [...]
Scientists make huge Parkinson’s breakthrough as they discover ‘protein trigger’
Scientists have, for the first time, directly visualised the protein clusters in the brain believed to trigger Parkinson's disease, bringing them one step closer to potential treatments. Parkinson's is a progressive incurable neurological disorder [...]
Alpha amino acids’ stability may explain their role as early life’s protein building blocks
A new study from the Hebrew University of Jerusalem published in the Proceedings of the National Academy of Sciences sheds light on one of life's greatest mysteries: why biology is based on a very specific set [...]
3D bioprinting advances enable creation of artificial blood vessels with layered structures
To explore possible treatments for various diseases, either animal models or human cell cultures are usually used first; however, animal models do not always mimic human diseases well, and cultures are far removed [...]
Drinking less water daily spikes your stress hormone
Researchers discovered that people who don’t drink enough water react with sharper cortisol spikes during stressful events, explaining why poor hydration is tied to long-term health risks. A recent study in the Journal of Applied [...]
Nanomed Trials Surge Highlighting Need for Standardization
Researchers have identified over 4,000 nanomedical clinical trials in progress now, highlighting rapid growth in the field and the need for a standardized lexicon to support clinical translation and collaboration. Nanotechnology is the science of [...]
Review: How Could Microalgal Nanoparticles Treat Cancer?
A new approach for cancer treatment involves the use of microalgal-derived nanoparticles. A recent review in Frontiers in Bioengineering and Biotechnology examines their potential as a sustainable and biocompatible solution. Promise and Limitations Nanoparticles (NPs), defined as [...]
COVID-19 models suggest universal vaccination may avert over 100,000 hospitalizations
US Scenario Modeling Hub, a collaborative modeling effort of 17 academic research institutions, reports a universal COVID-19 vaccination recommendation could avert thousands more US hospitalizations and deaths than a high-risk-only strategy. COVID-19 remains a [...]
Climate change fuels spread of neurological virus in Europe
Growing numbers of West Nile virus infection cases, fueled by climate change, are sparking fears among citizens and healthcare providers in Europe. A Clinical Insight in the European Journal of Internal Medicine, published by Elsevier, [...]
Pioneering the next-generation nanoparticle drug delivery system
Researchers report a materials breakthrough enabling a new wave of nanodrug applications, from delivery to diagnostics and gene editing, with global impact. (Nanowerk News) An Australian research team has achieved an advanced materials breakthrough [...]
New Eye Drops Sharpen Aging Eyes in Just One Hour
Imagine tossing aside your reading glasses and regaining crisp, youthful vision with just a few drops a day. New research suggests that specially formulated eye drops can significantly improve near vision in people with [...]
Scientists Use Electricity To “Reprogram” the Immune System for Faster Healing
Researchers from Trinity College Dublin have discovered that electrically stimulating 'macrophages' – one of the immune system's key players – can 'reprogramme' them in such a way to reduce inflammation and encourage faster, more [...]
Long Covid sufferers left to fend for themselves
When Alex Sprackland caught Covid-19 in March 2020, he thought he’d be back to normal in no time. Yet, five years on, the 34-year-old still grapples with the severe, life-limiting effects of the infection. [...]
New Research Reveals Nanoplastics’ Damaging Effect on Brain Cells
Researchers at Trinity Biomedical Sciences Institute (TBSI) have found that nanoplastics, which are even smaller than microplastics, impair energy metabolism in brain cells. The results were reported in the Journal of Hazardous Materials: Plastics. In addition to [...]
New research – eyedrops to lower lifetime risk of nearsightedness complications
For the first time, researchers are leading a national study to see if the onset of nearsightedness can be delayed – and consequently reduced in magnitude over a lifetime – with the use of [...]
Study Shows Brain Signals Only Matter if They Arrive on Time
Signals are processed only if they reach the brain during brief receptive cycles. This timing mechanism explains how attention filters information and may inform therapies and brain-inspired technologies. It has long been recognized that [...]