Summary: New research reveals that aging isn’t just a local cellular process—it can spread throughout the body via the bloodstream. A redox-sensitive protein called ReHMGB1, secreted by senescent cells, was found to trigger aging features in distant tissues, impairing regeneration and muscle function.
Blocking ReHMGB1 with antibodies in mice reduced cellular aging markers and improved physical performance after injury. These findings identify a key molecular messenger of systemic aging and offer a promising therapeutic target to slow or reverse age-related decline.
Key Facts:
- Aging Spreads Through Blood: ReHMGB1 transmits senescence signals from one tissue to another.
- Reversible Damage: Blocking HMGB1 improved tissue repair and function in aging mice.
- Therapeutic Potential: Targeting circulating HMGB1 could help treat age-related diseases.
Source: Korea University College of Medicine
For the first time in the world, a Korean research team discovered how cellular aging can spread systemically through the bloodstream—offering new insights and a potential therapeutic strategy to combat aging-related decline.
Professor Ok Hee Jeon’s research group at the Department of Convergence Medicine, Korea University’s College of Medicine, discovered that High Mobility Group Box 1 (HMGB1),a key extracellular senescence-associated secretory phenotype (SASP) factor, plays a critical role in transmitting senescence from aging cells to distant tissues.
Senescent cells are known to secrete pro-inflammatory factors and signaling molecules—collectively known as SASP—which induce paracrine senescence in surrounding cells.
Over time, these senescent cells accumulate in various tissues, impairing regenerative capacity and contributing to tissue dysfunction. However, the mechanism by which senescence spreads systemically remained unclear.
In their latest study published in Metabolism – Clinical and Experimental (Impact Factor 10.9, top 4.6% in endocrinology and metabolism), Professor Jeon’s team provides the first evidence that reduced HMGB1 (ReHMGB1), a redox-sensitive isoform of HMGB1, circulates through the bloodstream and induces senescence in remote tissues.
Using both in vitro and in vivo models, the researchers demonstrated that extracellular ReHMGB1, but not its oxidized form (OxHMGB1), robustly induces senescence-like features in multiple human cell types—including fibroblasts, renal epithelial cells, and skeletal muscle cells.
Mice systemically treated with ReHMGB1 exhibited elevated senescence markers (p21, p16), increased SASP factor expression, and impaired muscle function.
Furthermore, in a muscle injury model in middle-aged mice, administration of anti-HMGB1 antibodies not only reduced senescence markers but also enhanced muscle regeneration and improved physical performance.
These findings highlight the therapeutic potential of targeting extracellular HMGB1 to reverse or mitigate age-related tissue dysfunction.
“This study reveals that aging signals are not confined to individual cells but can be systemically transmitted via the blood, with ReHMGB1 acting as a key driver,” said Professor Jeon.
“By blocking this pathway, we were able to restore tissue regenerative capacity, suggesting a promising strategy to treat aging-related diseases.”
Funding: This research was supported by the Myokine Research Center (MRC) and the Mid-sized Research Support Project of the Ministry of Science and ICT. and was conducted in collaboration with internationally recognized experts in aging biology, including Professor Irina Conboy of UC Berkeley and Professor Christopher Wiley of Turfts University.
Abstract
Propagation of senescent phenotypes by extracellular HMGB1 is dependent on its redox state
Background & purpose
Cellular senescence spreads systemically through blood circulation, but its mechanisms remain unclear. High mobility group box 1 (HMGB1), a multifunctional senescence-associated secretory phenotype (SASP) factor, exists in various redox states. Here, we investigate the role of redox-sensitive HMGB1 (ReHMGB1) in driving paracrine and systemic senescence.
Methods
We applied the paracrine senescence cultured model to evaluate the effect of ReHMGB1 on cellular senescence. Each redox state of HMGB1 was treated extracellularly to assess systemic senescence both in vitro and in vivo. Senescence was determined by SA-β-gal & EdU staining, p16INK4a and p21 expression, RT-qPCR, and Western blot methods. Bulk RNA sequencing was performed to investigate ReHMGB1-driven transcriptional changes and underlying pathways.
Cytokine arrays characterized SASP profiles from ReHMGB1-treated cells. In vivo, young mice were administered ReHMGB1 systemically to induce senescence across multiple tissues. A muscle injury model in middle-aged mice was used to assess the therapeutic efficacy of HMGB1 blockade.
Results
Extracellular ReHMGB1, but not its oxidized form, robustly induced senescence-like phenotypes across multiple cell types and tissues. Transcriptomic analysis revealed activation of RAGE-mediated JAK/STAT and NF-κB pathways, driving SASP expression and cell cycle arrest.
Cytokine profiling confirmed paracrine senescence features induced by ReHMGB1. ReHMGB1 administration elevated senescence markers in vivo, while HMGB1 inhibition reduced senescence, attenuated systemic inflammation, and enhanced muscle regeneration.
Conclusion
ReHMGB1 is a redox-dependent pro-geronic factor driving systemic senescence. Targeting extracellular HMGB1 may offer therapeutic potential for preventing aging-related pathologies.
News
Very low LDL-cholesterol correlates to fewer heart problems after stroke
Brigham and Women's Hospital's TIMI Study Group reports that in patients with prior ischemic stroke, very low achieved LDL-cholesterol correlated with fewer major adverse cardiovascular events and fewer recurrent strokes, without an apparent increase [...]
“Great Unified Microscope” Reveals Hidden Micro and Nano Worlds Inside Living Cells
University of Tokyo researchers have created a powerful new microscope that captures both forward- and back-scattered light at once, letting scientists see everything from large cell structures to tiny nanoscale particles in a single shot. Researchers [...]
Breakthrough Alzheimer’s Drug Has a Hidden Problem
Researchers in Japan found that although the Alzheimer’s drug lecanemab successfully removes amyloid plaques from the brain, it does not restore the brain’s waste-clearing system within the first few months of treatment. The study suggests that [...]
Concerning New Research Reveals Colon Cancer Is Skyrocketing in Adults Under 50
Colorectal cancer is striking younger adults at alarming rates, driven by lifestyle and genetic factors. Colorectal cancer (CRC) develops when abnormal cells grow uncontrollably in the colon or rectum, forming tumors that can eventually [...]
Scientists Discover a Natural, Non-Addictive Way To Block Pain That Could Replace Opioids
Scientists have discovered that the body can naturally dull pain through its own localized “benzodiazepine-like” peptides. A groundbreaking study led by a University of Leeds scientist has unveiled new insights into how the body manages pain, [...]
GLP-1 Drugs Like Ozempic Work, but New Research Reveals a Major Catch
Three new Cochrane reviews find evidence that GLP-1 drugs lead to clinically meaningful weight loss, though industry-funded studies raise concerns. Three new reviews from Cochrane have found that GLP-1 medications can lead to significant [...]
How a Palm-Sized Laser Could Change Medicine and Manufacturing
Researchers have developed an innovative and versatile system designed for a new generation of short-pulse lasers. Lasers that produce extremely short bursts of light are known for their remarkable precision, making them indispensable tools [...]
New nanoparticles stimulate the immune system to attack ovarian tumors
Cancer immunotherapy, which uses drugs that stimulate the body’s immune cells to attack tumors, is a promising approach to treating many types of cancer. However, it doesn’t work well for some tumors, including ovarian [...]
New Drug Kills Cancer 20,000x More Effectively With No Detectable Side Effects
By restructuring a common chemotherapy drug, scientists increased its potency by 20,000 times. In a significant step forward for cancer therapy, researchers at Northwestern University have redesigned the molecular structure of a well-known chemotherapy drug, greatly [...]
Lipid nanoparticles discovered that can deliver mRNA directly into heart muscle cells
Cardiovascular disease continues to be the leading cause of death worldwide. But advances in heart-failure therapeutics have stalled, largely due to the difficulty of delivering treatments at the cellular level. Now, a UC Berkeley-led [...]
The basic mechanisms of visual attention emerged over 500 million years ago, study suggests
The brain does not need its sophisticated cortex to interpret the visual world. A new study published in PLOS Biology demonstrates that a much older structure, the superior colliculus, contains the necessary circuitry to perform the [...]
AI Is Overheating. This New Technology Could Be the Fix
Engineers have developed a passive evaporative cooling membrane that dramatically improves heat removal for electronics and data centers Engineers at the University of California San Diego have created an innovative cooling system designed to greatly enhance [...]
New nanomedicine wipes out leukemia in animal study
In a promising advance for cancer treatment, Northwestern University scientists have re-engineered the molecular structure of a common chemotherapy drug, making it dramatically more soluble and effective and less toxic. In the new study, [...]
Mystery Solved: Scientists Find Cause for Unexplained, Deadly Diseases
A study reveals that a protein called RPA is essential for maintaining chromosome stability by stimulating telomerase. New findings from the University of Wisconsin-Madison suggest that problems with a key protein that helps preserve chromosome stability [...]
Nanotech Blocks Infection and Speed Up Chronic Wound Recovery
A new nanotech-based formulation using quercetin and omega-3 fatty acids shows promise in halting bacterial biofilms and boosting skin cell repair. Scientists have developed a nanotechnology-based treatment to fight bacterial biofilms in wound infections. The [...]
Researchers propose five key questions for effective adoption of AI in clinical practice
While Artificial Intelligence (AI) can be a powerful tool that physicians can use to help diagnose their patients and has great potential to improve accuracy, efficiency and patient safety, it has its drawbacks. It [...]















