A new technology co-developed at EMBL Hamburg provides new insights into mRNA pharmaceuticals and other nanomedicines, which can be helpful for the development of new products
Many novel mRNA nanomedicines, which are currently in different stages of development, may become available in the future. One requirement for all applications of mRNA in pharmaceutical products is that they need to be formulated in suitable delivery systems, each designed for different functions and optimized for therapeutic product needs based on the intended application and route of delivery.
Lipid-based nanoparticles are tiny droplets of fat-like molecules that serve as protective packaging for the mRNA. Their properties depend on composition, structure, manufacturing protocol, and other conditions.
An important aspect of nanoparticles is their size. By their nature, nanoparticles can vary a little bit in size, some being a bit smaller, and some a bit larger than the average value. The particle size can have an influence, for example, on the stability and the behavior of the formulations after administration. It is therefore important to control the particle size inside a pharmaceutical product to evaluate and ensure its quality.
Scientists at EMBL Hamburg, Johannes Gutenberg University Mainz, Postnova Analytics GmbH, and BioNTech SE have developed a new method to precisely elucidate the size of all particles in such pharmaceutical products, as well as their structure and how many RNA molecules they carry inside them. The study was conducted based on lipoplex formulations, an mRNA delivering technology developed by BioNTech. The work is published in the journal Scientific Reports.
“So far, it was very difficult to measure all these size-related properties; therefore, often only average values were determined,” said Heinrich Haas, one of the leaders of the project. “With our new method, we can determine many size-related features all at once, with a single measurement and for all nanoparticles in a product. This information can be handy to evaluate product quality.”
The method will also be applicable for the investigation of other pharmaceutical products.
“Liposomes are another type of pharmaceutical nanoparticles which have been applied for years for the treatment of cancer or infectious diseases such as fungal infections,” said Peter Langguth, the project leader at Johannes Gutenberg University Mainz.
“Now even generic liposome products are available on the market, and probably there will be more to come. The new method can be very useful in evaluating the quality of these generics in comparison to the originator products and will pave the way for further high-quality drug products at an even more reasonable cost.”
A two-in-one method
What makes the new method so powerful is that it couples two techniques: asymmetrical-flow field-flow fractionation (AF4) and small-angle X-ray scattering (SAXS). AF4 separates lipid-based nanoparticles from other parts of an mRNA nanomedicine and sorts them according to their size.
SAXS allows scientists to determine the structure and the number of sorted particles. To do this unequivocally, only one type of particle must be analyzed at a time, which is why combining sorting and measuring is so critical.
SAXS is one of the key techniques applied and available at EMBL Hamburg as a service for researchers from academia and industry in Europe and beyond. EMBL Hamburg’s SAXS beamline at the PETRA III synchrotron, now equipped with the AF4 device—set up with the help of collaborators at Postnova Analytics GmbH—will open up new opportunities not only for studying pharmaceutical nanoparticles, but also for other types of research.
“The combination of these two tools can now be used in many different areas of science,” said Melissa Graewert, Staff Scientist at EMBL Hamburg.
“In addition to helping create new medicines, we can also use them to understand how different-sized particles interact in complex biological systems. For example, I’ve now used this new setup to closely examine how very small plastic debris called nanoplastics, which pollute our waters, can be covered by binding proteins on their surface. A key question is whether this protein shielding enables nanoplastics to travel through our bloodstream, potentially reaching different organs, as they may no longer be recognized as foreign objects by our immune system.”
This work follows up on several previous collaborative studies between EMBL Hamburg, BioNTech SE, and Johannes Gutenberg University Mainz, which explored how mRNA can be better formulated and delivered into human cells. The scientists are continuing their collaborative research to further explore the application of mRNA nanomedicines.
More information: Melissa A. Graewert et al, Quantitative size-resolved characterization of mRNA nanoparticles by in-line coupling of asymmetrical-flow field-flow fractionation with small angle X-ray scattering, Scientific Reports (2023). DOI: 10.1038/s41598-023-42274-z
Journal information: Scientific Reports
News
Sleep Deprivation Triggers a Strange Brain Cleanup
When you don’t sleep enough, your brain may clean itself at the exact moment you need it to think. Most people recognize the sensation. After a night of inadequate sleep, staying focused becomes harder [...]
Lab-grown corticospinal neurons offer new models for ALS and spinal injuries
Researchers have developed a way to grow a highly specialized subset of brain nerve cells that are involved in motor neuron disease and damaged in spinal injuries. Their study, published today in eLife as the final [...]
Urgent warning over deadly ‘brain swelling’ virus amid fears it could spread globally
Airports across Asia have been put on high alert after India confirmed two cases of the deadly Nipah virus in the state of West Bengal over the past month. Thailand, Nepal and Vietnam are among the [...]
This Vaccine Stops Bird Flu Before It Reaches the Lungs
A new nasal spray vaccine could stop bird flu at the door — blocking infection, reducing spread, and helping head off the next pandemic. Since first appearing in the United States in 2014, H5N1 [...]
These two viruses may become the next public health threats, scientists say
Two emerging pathogens with animal origins—influenza D virus and canine coronavirus—have so far been quietly flying under the radar, but researchers warn conditions are ripe for the viruses to spread more widely among humans. [...]
COVID-19 viral fragments shown to target and kill specific immune cells
COVID-19 viral fragments shown to target and kill specific immune cells in UCLA-led study Clues about extreme cases and omicron’s effects come from a cross-disciplinary international research team New research shows that after the [...]
Smaller Than a Grain of Salt: Engineers Create the World’s Tiniest Wireless Brain Implant
A salt-grain-sized neural implant can record and transmit brain activity wirelessly for extended periods. Researchers at Cornell University, working with collaborators, have created an extremely small neural implant that can sit on a grain of [...]
Scientists Develop a New Way To See Inside the Human Body Using 3D Color Imaging
A newly developed imaging method blends ultrasound and photoacoustics to capture both tissue structure and blood-vessel function in 3D. By blending two powerful imaging methods, researchers from Caltech and USC have developed a new way to [...]
Brain waves could help paralyzed patients move again
People with spinal cord injuries often lose the ability to move their arms or legs. In many cases, the nerves in the limbs remain healthy, and the brain continues to function normally. The loss of [...]
Scientists Discover a New “Cleanup Hub” Inside the Human Brain
A newly identified lymphatic drainage pathway along the middle meningeal artery reveals how the human brain clears waste. How does the brain clear away waste? This task is handled by the brain’s lymphatic drainage [...]
New Drug Slashes Dangerous Blood Fats by Nearly 40% in First Human Trial
Scientists have found a way to fine-tune a central fat-control pathway in the liver, reducing harmful blood triglycerides while preserving beneficial cholesterol functions. When we eat, the body turns surplus calories into molecules called [...]
A Simple Brain Scan May Help Restore Movement After Paralysis
A brain cap and smart algorithms may one day help paralyzed patients turn thought into movement—no surgery required. People with spinal cord injuries often experience partial or complete loss of movement in their arms [...]
Plant Discovery Could Transform How Medicines Are Made
Scientists have uncovered an unexpected way plants make powerful chemicals, revealing hidden biological connections that could transform how medicines are discovered and produced. Plants produce protective chemicals called alkaloids as part of their natural [...]
Scientists Develop IV Therapy That Repairs the Brain After Stroke
New nanomaterial passes the blood-brain barrier to reduce damaging inflammation after the most common form of stroke. When someone experiences a stroke, doctors must quickly restore blood flow to the brain to prevent death. [...]
Analyzing Darwin’s specimens without opening 200-year-old jars
Scientists have successfully analyzed Charles Darwin's original specimens from his HMS Beagle voyage (1831 to 1836) to the Galapagos Islands. Remarkably, the specimens have been analyzed without opening their 200-year-old preservation jars. Examining 46 [...]
Scientists discover natural ‘brake’ that could stop harmful inflammation
Researchers at University College London (UCL) have uncovered a key mechanism that helps the body switch off inflammation—a breakthrough that could lead to new treatments for chronic diseases affecting millions worldwide. Inflammation is the [...]















