Most bacteria cannot be cultured in the lab-and that’s been bad news for medicine. Many of our frontline antibiotics originated from microbes, yet as antibiotic resistance spreads and drug pipelines run dry, the soil beneath our feet has a vast hidden reservoir of untapped lifesaving compounds.
Now, researchers have developed a way to access this microbial goldmine. Their approach, published in Nature Biotechnology, circumvents the need to grow bacteria in the lab by extracting very large DNA fragments directly from soil to piece together the genomes of previously hidden microbes, and then mines resulting genomes for bioactive molecules.
From a single forest sample, the team generated hundreds of complete bacterial genomes never seen before, as well as two new antibiotic leads. The findings offer a scalable way to scour unculturable bacteria for new drug leads-and expose the vast, uncharted microbial frontier that shapes our environment.
We finally have the technology to see the microbial world that have been previously inaccessible to humans. And we’re not just seeing this information; we’re already turning it into potentially useful antibiotics. This is just the tip of the spear.”
Sean F. Brady, head of the Laboratory of Genetically Encoded Small Molecules at Rockefeller
Microbial dark matter
When hunting for bacteria, soil is an obvious choice. It’s the largest, most biodiverse reservoir of bacteria on the planet-a single teaspoon of it may contain thousands of different species. Many important therapeutics, including most of our antibiotic arsenal, were discovered in the tiny fraction of soil bacteria that can be grown in the laboratory. And soil is dirt cheap.
Yet we know very little about the millions of microbes packed into the earth. Scientists suspect that these hidden bacteria hold not only an untapped reservoir of new therapeutics, but clues as to how microbes shape climate, agriculture, and the larger environment that we live in. “All over the world there’s this hidden ecosystem of microbes that could have dramatic effects on our lives,” Brady adds. “We wanted to finally see them.”
Getting that glimpse involved weaving together several approaches. First, the team optimized a method for isolating large, high-quality DNA fragments directly from soil. Pairing this advance with emerging long-read nanopore sequencing allowed Jan Burian, a postdoctoral associate in the Brady lab, to produce continuous stretches of DNA that were tens of thousands of base pairs long-200 times longer than any previously existing technology could manage. Soil DNA contains a huge number of different bacteria; without such large DNA sequences to work with, resolving that complex genetic puzzle into complete and contiguous genomes for disparate bacteria proved exceedingly difficult.
“It’s easier to assemble a whole genome out of bigger pieces of DNA, rather than the millions of tiny snippets that were available before,” Brady says. “And that makes a dramatic difference in your confidence in your results.”
Unique small molecules, like antibiotics, that bacteria produce are called “natural products”. To convert the newly uncovered sequences into bioactive molecules, the team applied a synthetic bioinformatic natural products (synBNP) approach. They bioinformatically predicted the chemical structures of natural products directly from the genome data and then chemically synthesized them in the lab. With the synBNP approach, Brady and colleagues managed to turn the genetic blueprints from uncultured bacteria into actual molecules-including two potent antibiotics.
Brady describes the method, which is scalable and can be adapted to virtually any metagenomic space beyond soil, as a three-step strategy that could kick off a new era of microbiology: “Isolate big DNA, sequence it, and computationally convert it into something useful.”
Two new drug candidates, and counting
Applied to their single forest soil sample, the team’s approach produced 2.5 terabase-pairs of sequence data-the deepest long-read exploration of a single soil sample to date. Their analysis uncovered hundreds of complete contiguous bacterial genomes, more than 99 percent of which were entirely new to science and identified members from 16 major branches of the bacterial family tree.
The two lead compounds discovered could translate into potent antibiotics. One, called erutacidin, disrupts bacterial membranes through an uncommon interaction with the lipid cardiolipin and is effective against even the most challenging drug-resistant bacteria. The other, trigintamicin, acts on a protein-unfolding motor known as ClpX, a rare antibacterial target.
Brady emphasizes that these discoveries are only the beginning. The study demonstrates that previously inaccessible microbial genomes can now be decoded and mined for bioactive molecules at scale without culturing the organisms. Unlocking the genetic potential of microbial dark matter may also provide new insights into the hidden microbial networks that sustain ecosystems.
“We’re mainly interested in small molecules as therapeutics, but there are applications beyond medicine,” Burian says. “Studying culturable bacteria led to advances that helped shape the modern world and finally seeing and accessing the uncultured majority will drive a new generation of discovery.”
Burian, J., et al. (2025). Bioactive molecules unearthed by terabase-scale long-read sequencing of a soil metagenome. Nature Biotechnology. doi.org/10.1038/s41587-025-02810-w
News
Platelet-inspired nanoparticles could improve treatment of inflammatory diseases
Scientists have developed platelet-inspired nanoparticles that deliver anti-inflammatory drugs directly to brain-computer interface implants, doubling their effectiveness. Scientists have found a way to improve the performance of brain-computer interface (BCI) electrodes by delivering anti-inflammatory drugs directly [...]
After 150 years, a new chapter in cancer therapy is finally beginning
For decades, researchers have been looking for ways to destroy cancer cells in a targeted manner without further weakening the body. But for many patients whose immune system is severely impaired by chemotherapy or radiation, [...]
Older chemical libraries show promise for fighting resistant strains of COVID-19 virus
SARS‑CoV‑2, the virus that causes COVID-19, continues to mutate, with some newer strains becoming less responsive to current antiviral treatments like Paxlovid. Now, University of California San Diego scientists and an international team of [...]
Lower doses of immunotherapy for skin cancer give better results, study suggests
According to a new study, lower doses of approved immunotherapy for malignant melanoma can give better results against tumors, while reducing side effects. This is reported by researchers at Karolinska Institutet in the Journal of the National [...]
Researchers highlight five pathways through which microplastics can harm the brain
Microplastics could be fueling neurodegenerative diseases like Alzheimer's and Parkinson's, with a new study highlighting five ways microplastics can trigger inflammation and damage in the brain. More than 57 million people live with dementia, [...]
Tiny Metal Nanodots Obliterate Cancer Cells While Largely Sparing Healthy Tissue
Scientists have developed tiny metal-oxide particles that push cancer cells past their stress limits while sparing healthy tissue. An international team led by RMIT University has developed tiny particles called nanodots, crafted from a metallic compound, [...]
Gold Nanoclusters Could Supercharge Quantum Computers
Researchers found that gold “super atoms” can behave like the atoms in top-tier quantum systems—only far easier to scale. These tiny clusters can be customized at the molecular level, offering a powerful, tunable foundation [...]
A single shot of HPV vaccine may be enough to fight cervical cancer, study finds
WASHINGTON -- A single HPV vaccination appears just as effective as two doses at preventing the viral infection that causes cervical cancer, researchers reported Wednesday. HPV, or human papillomavirus, is very common and spread [...]
New technique overcomes technological barrier in 3D brain imaging
Scientists at the Swiss Light Source SLS have succeeded in mapping a piece of brain tissue in 3D at unprecedented resolution using X-rays, non-destructively. The breakthrough overcomes a long-standing technological barrier that had limited [...]
Scientists Uncover Hidden Blood Pattern in Long COVID
Researchers found persistent microclot and NET structures in Long COVID blood that may explain long-lasting symptoms. Researchers examining Long COVID have identified a structural connection between circulating microclots and neutrophil extracellular traps (NETs). The [...]
This Cellular Trick Helps Cancer Spread, but Could Also Stop It
Groups of normal cbiells can sense far into their surroundings, helping explain cancer cell migration. Understanding this ability could lead to new ways to limit tumor spread. The tale of the princess and the [...]
New mRNA therapy targets drug-resistant pneumonia
Bacteria that multiply on surfaces are a major headache in health care when they gain a foothold on, for example, implants or in catheters. Researchers at Chalmers University of Technology in Sweden have found [...]
Current Heart Health Guidelines Are Failing To Catch a Deadly Genetic Killer
New research reveals that standard screening misses most people with a common inherited cholesterol disorder. A Mayo Clinic study reports that current genetic screening guidelines overlook most people who have familial hypercholesterolemia, an inherited disorder that [...]
Scientists Identify the Evolutionary “Purpose” of Consciousness
Summary: Researchers at Ruhr University Bochum explore why consciousness evolved and why different species developed it in distinct ways. By comparing humans with birds, they show that complex awareness may arise through different neural architectures yet [...]
Novel mRNA therapy curbs antibiotic-resistant infections in preclinical lung models
Researchers at the Icahn School of Medicine at Mount Sinai and collaborators have reported early success with a novel mRNA-based therapy designed to combat antibiotic-resistant bacteria. The findings, published in Nature Biotechnology, show that in [...]
New skin-permeable polymer delivers insulin without needles
A breakthrough zwitterionic polymer slips through the skin’s toughest barriers, carrying insulin deep into tissue and normalizing blood sugar, offering patients a painless alternative to daily injections. A recent study published in the journal Nature examines [...]















