Antimony-based substances have good prospects as anode materials in sodium-ion batteries (SIBs) because of their great hypothetical capacity. Unfortunately, the high volumetric growth and limited ion conduction in the electrolytic procedure prevent them from meeting their theoretical capabilities.
In a study published in the journal Carbon, H2/C heat reduction, selenization and sulfurization (SAS) of sodium stibogluconate resulted in Sb2Se3@C and Sb2S3@C nanodots with consistent diameters of 20.7 nm and 19 nm, respectively.
Antimony-based Materials for Sodium-Ion Batteries
Many attempts have been made to investigate suitable electrode substances for sodium-ion batteries (SIBs). Because of their increased capacities compared to anode materials based on intercalation, alloying and conversion-based electrode substances have gained popularity.
Antimony-based substances (Sb, SnSb, Sb2Se3, Sb2S3) are possible anode substances for sodium-ion batteries having unique electrolytic mechanisms and significant hypothetical capacities. Owing to their large hypothetical specific capacities, Sb2Se3 and Sb2S3 are particularly appealing options.
Unfortunately, considerable volumetric growth and inadequate ionic conduction in their electrochemical process are the two fundamental issues that cause quick capacity degradation and poor rate performance at high current density.
Sb2Se3 and Sb2S3 are chalcogenides based on antimony with differing anions, resulting in variations in makeup and conduction. Studies of the influence of various anions on the volumetric growth of the electrode morphology, the capacity to attach with sodium ions (Na+) in the charging/discharging phase, and ionic conduction are of particular importance in the development of electrode components for sodium-ion batteries.
Given that both substances have quick capacity degradation and poor rate performance, avoiding failure of the structure and enhancing electrode conductance are considered primary goals.
Addressing the Limitations of Antimony-based Materials
In general, logical structural design and carbon encapsulation are excellent solutions to these critical issues. Using nanoscale materials may reduce ionic diffusion paths and speed up the interchange of electrons and Na+ ions.
During insertion/removal of sodium ions, the composite carbon is advantageous for accelerating electron transport and improving structural integrity. As a result, a range of Sb2Se3@C and Sb2S3@C composites have been investigated for sodium-ion batteries.
Sb2Se3 nanowires, rod-shaped Sb2S3, and Sb2S3@PPy micro-clips have all been documented thus far. While beneficial electrolytic performance has been achieved, the short cyclic life and extensive examination of the relationship between morphology and Na storing efficiency need additional investigation.
A suitable technique for obtaining extended cyclic life has been proposed to be the construction of an interlinked conducting carbon framework outside of the standalone nanodots (NDs).
Analysis Techniques Used in the Study
Power X-ray diffraction (XRD) was used to describe the crystallographic characteristics. The existence of amorphous carbon with sulfur or selenium loading was verified by Raman spectroscopy, and the amount of amorphous carbon was validated by thermogravimetric assessment.
Transmission electron microscopy (TEM) imaging was used to indicate the unique morphological makeup and distribution of particle sizes. The electrolytic capabilities of the two electrodes for sodium-ion batteries were evaluated using galvanostatic charging/discharging experiments. Density functional theory (DFT) computations were performed to further validate on an atomic level the sodium ion storing kinetics.
Important Findings
In this study, the team synthesized Sb2X3 (where X is Se or S) NDs@C from sodium stibogluconate using a complex pyrolytic technique and utilized them as anode components for sodium-ion batteries. Nanodots having particle sizes of around 19-21 nanometers were encased in a conducting carbon framework loaded with selenium or sulfur.
Each Sb2Se3 and Sb2S3 nanodot was covered by a weakly graphitized interlinking carbon matrix, which was then crosslinked to generate a highly conductive framework.
The reversible capacity displayed by the Sb2Se3 NDs@C electrode was about 316 mA h g-1 following 100 cycles at 100 mA g-1 and about 269 mA h g-1 following 200 cycles at 1 A g-1.
The extremely small nanodot architecture, limited shielding of the crosslinked carbon framework, superior electric conductance, and reduced hypothetical volumetric growth throughout the recurring alloying and converting operations all contributed to the improved electrolytic performance.
Density functional theory computations revealed that Sb2Se3 NDs@C has a lower sodium ion diffusion energy threshold, stronger product-carbon bonding, and more vacant energy bands, which should result in more solid sodium ion storing kinetics and rate performance.
Given the ease of manufacturing, good yield, cheap cost, and excellent electrolytic performance, this research may pave the way for developing upscaled multifunction electrodes using Sb-based coordination compounds in zero to three dimensions.
News
New Molecule Blocks Deadliest Brain Cancer at Its Genetic Root
Researchers have identified a molecule that disrupts a critical gene in glioblastoma. Scientists at the UVA Comprehensive Cancer Center say they have found a small molecule that can shut down a gene tied to glioblastoma, a [...]
Scientists Finally Solve a 30-Year-Old Cancer Mystery Hidden in Rye Pollen
Nearly 30 years after rye pollen molecules were shown to slow tumor growth in animals, scientists have finally determined their exact three-dimensional structures. Nearly 30 years ago, researchers noticed something surprising in rye pollen: [...]
NanoMedical Brain/Cloud Interface – Explorations and Implications. A new book from Frank Boehm
New book from Frank Boehm, NanoappsMedical Inc Founder: This book explores the future hypothetical possibility that the cerebral cortex of the human brain might be seamlessly, safely, and securely connected with the Cloud via [...]
How lipid nanoparticles carrying vaccines release their cargo
A study from FAU has shown that lipid nanoparticles restructure their membrane significantly after being absorbed into a cell and ending up in an acidic environment. Vaccines and other medicines are often packed in [...]
New book from NanoappsMedical Inc – Molecular Manufacturing: The Future of Nanomedicine
This book explores the revolutionary potential of atomically precise manufacturing technologies to transform global healthcare, as well as practically every other sector across society. This forward-thinking volume examines how envisaged Factory@Home systems might enable the cost-effective [...]
A Virus Designed in the Lab Could Help Defeat Antibiotic Resistance
Scientists can now design bacteria-killing viruses from DNA, opening a faster path to fighting superbugs. Bacteriophages have been used as treatments for bacterial infections for more than a century. Interest in these viruses is rising [...]
Sleep Deprivation Triggers a Strange Brain Cleanup
When you don’t sleep enough, your brain may clean itself at the exact moment you need it to think. Most people recognize the sensation. After a night of inadequate sleep, staying focused becomes harder [...]
Lab-grown corticospinal neurons offer new models for ALS and spinal injuries
Researchers have developed a way to grow a highly specialized subset of brain nerve cells that are involved in motor neuron disease and damaged in spinal injuries. Their study, published today in eLife as the final [...]
Urgent warning over deadly ‘brain swelling’ virus amid fears it could spread globally
Airports across Asia have been put on high alert after India confirmed two cases of the deadly Nipah virus in the state of West Bengal over the past month. Thailand, Nepal and Vietnam are among the [...]
This Vaccine Stops Bird Flu Before It Reaches the Lungs
A new nasal spray vaccine could stop bird flu at the door — blocking infection, reducing spread, and helping head off the next pandemic. Since first appearing in the United States in 2014, H5N1 [...]
These two viruses may become the next public health threats, scientists say
Two emerging pathogens with animal origins—influenza D virus and canine coronavirus—have so far been quietly flying under the radar, but researchers warn conditions are ripe for the viruses to spread more widely among humans. [...]
COVID-19 viral fragments shown to target and kill specific immune cells
COVID-19 viral fragments shown to target and kill specific immune cells in UCLA-led study Clues about extreme cases and omicron’s effects come from a cross-disciplinary international research team New research shows that after the [...]
Smaller Than a Grain of Salt: Engineers Create the World’s Tiniest Wireless Brain Implant
A salt-grain-sized neural implant can record and transmit brain activity wirelessly for extended periods. Researchers at Cornell University, working with collaborators, have created an extremely small neural implant that can sit on a grain of [...]
Scientists Develop a New Way To See Inside the Human Body Using 3D Color Imaging
A newly developed imaging method blends ultrasound and photoacoustics to capture both tissue structure and blood-vessel function in 3D. By blending two powerful imaging methods, researchers from Caltech and USC have developed a new way to [...]
Brain waves could help paralyzed patients move again
People with spinal cord injuries often lose the ability to move their arms or legs. In many cases, the nerves in the limbs remain healthy, and the brain continues to function normally. The loss of [...]
Scientists Discover a New “Cleanup Hub” Inside the Human Brain
A newly identified lymphatic drainage pathway along the middle meningeal artery reveals how the human brain clears waste. How does the brain clear away waste? This task is handled by the brain’s lymphatic drainage [...]















