Anita Saraf investigates mosquito saliva to understand how viruses like dengue and West Nile are transmitted, using mass spectrometry to identify potential targets for vaccines and treatments.
You might guess it’d be tough to extract saliva from a mosquito. And you’d be correct. Yet, because mosquitos spread disease via saliva, it’s critical to sample and study.
But Anita Saraf doesn’t collect mosquito spit herself — it gets delivered so she can discover its scientific secrets.
Saraf is the director of the Mass Spectrometry & Analytical Proteomics Laboratory at the University of Kansas, where she uses shotgun proteomics to analyze biological samples — basic science that underpins many drug therapies.
“Collecting saliva from these mosquitoes is challenging due to the small sample size, which is a common limitation in such experiments,” she said. “Our collaborators with the USDA Agricultural Research Service put the mouth of the mosquitoes into a tube, then stimulate salivation and collect the saliva.”

Now, with a new two-year grant of $250,000 per year from the U.S. Department of Agriculture’s National Bio and Agro-Defense Facility, Saraf currently is analyzing these samples of noninfectious mosquito saliva in the fight against “arboviruses” — the term for viruses spread by arthropods like mosquitoes.
These include West Nile, yellow fever, dengue fever, Japanese encephalitis, and other viruses that can harm or kill people, animals, and plants. The USDA has an interest in veterinary applications for the findings, but Saraf’s work could underpin therapies for people as well.
“The USDA wants to study how the virus affects the immune system and changes at the molecular level, particularly the proteome of mosquito saliva,” Saraf said. “When a virus infects a mosquito, it alters the proteins and other basic components of the mosquito, similar to how malaria affects its human host as it progresses through different stages.”
Proteomics Analysis Techniques
Saraf’s proteomics analysis of the saliva succeeds because of using very efficient sample processing methods in tandem with shotgun analysis. This approach is effective with very low volumes or amounts of sample like, for instance, hard-to-obtain mosquito spit.
“At our mass spectrometry core at KU, we use shotgun proteomics, nanoscale liquid chromatography coupled with tandem mass spectrometry, or nLC-MS, which requires only a minimal amount of protein in the nano-gram range, making it ideal for these types of biological samples,” Saraf said. “The sensitivity of our setup is crucial because, without it, we would need much larger protein quantities. Once we receive the saliva samples, we handle all the sample processing, preparation, and digestion to make them ready for mass-spectrometry analysis. We have the latest equipment and a special setup, which gives us high sensitivity, putting us at the forefront of this research.”
The data is analyzed at KU mass spectrometry core to form a robust understanding of how the molecular properties of mosquito saliva can change under different conditions.
“After data collection, the analysis requires extensive post-processing, including interpretation and comparison, for which I have over 24 years of experience,” Saraf said. “This is how we established a collaboration with USDA.”
According to the KU researcher, her lab’s shotgun approach of analyzing proteomes is robust and more sensitive than other methods, affording much more detailed time-course studies.
“We plan to study these changes under different conditions, including environmental variations in the mosquito after virus infection,” she said. “The focus is on the mosquitos’ saliva, which is critical because, like with the parasite (Plasmodium) that causes malaria, arboviruses are transmitted through the saliva when the mosquito bites.”
Saraf and her team also will analyze saliva from a control group of mosquitoes not infected by the virus — but kept under the same feeding conditions and infection duration as the test group. The end goal is to identify specific proteins of interest for future host-vector-virus interaction studies, which could become potential targets for drug therapies.
Future Directions and Implications
To date, Saraf’s team has worked with uninfected mosquitoes to establish baseline data. Once inactivation protocols are approved and authorized, the work will include samples from Biosafety Level 2 (BSL-2) arbovirus-infected mosquitoes.
“We’ll identify differences and changes at the proteome level by comparing the control and infected samples at different stages,” the KU researcher said. “The goal is to determine the protein changes that occur, as these can potentially serve as candidates for vaccine development. We’ll first need to select candidates, which is why we are using controls under the same conditions without infection. We must carefully load equal amounts of protein from both to ensure accurate comparisons — essentially, we’ll be able to compare ‘apples to apples.’”
Saraf’s work product is a list of the protein changes, both qualitative and quantitative, to strengthen the evidence available to fellow researchers and drug developers.
“Last time, our collaborators at USDA found the list very interesting, and it aligned with what has been reported in the literature,” she said. “Selecting candidates for further study will be the goal.”
The study was funded by the U.S. Department of Agriculture.

News
By working together, cells can extend their senses beyond their direct environment
The story of the princess and the pea evokes an image of a highly sensitive young royal woman so refined, she can sense a pea under a stack of mattresses. When it comes to [...]
Overworked Brain Cells May Hold the Key to Parkinson’s
Scientists at Gladstone Institutes uncovered a surprising reason why dopamine-producing neurons, crucial for smooth body movements, die in Parkinson’s disease. In mice, when these neurons were kept overactive for weeks, they began to falter, [...]
Old tires find new life: Rubber particles strengthen superhydrophobic coatings against corrosion
Development of highly robust superhydrophobic anti-corrosion coating using recycled tire rubber particles. Superhydrophobic materials offer a strategy for developing marine anti-corrosion materials due to their low solid-liquid contact area and low surface energy. However, [...]
This implant could soon allow you to read minds
Mind reading: Long a science fiction fantasy, today an increasingly concrete scientific goal. Researchers at Stanford University have succeeded in decoding internal language in real time thanks to a brain implant and artificial intelligence. [...]
A New Weapon Against Cancer: Cold Plasma Destroys Hidden Tumor Cells
Cold plasma penetrates deep into tumors and attacks cancer cells. Short-lived molecules were identified as key drivers. Scientists at the Leibniz Institute for Plasma Science and Technology (INP), working with colleagues from Greifswald University Hospital and [...]
This Common Sleep Aid May Also Protect Your Brain From Alzheimer’s
Lemborexant and similar sleep medications show potential for treating tau-related disorders, including Alzheimer’s disease. New research from Washington University School of Medicine in St. Louis shows that a commonly used sleep medication can restore normal sleep patterns and [...]
Sugar-Coated Nanoparticles Boost Cancer Drug Efficacy
A team of researchers at the University of Mississippi has discovered that coating cancer treatment carrying nanoparticles in a sugar-like material increases their treatment efficacy. They reported their findings in Advanced Healthcare Materials. Over a tenth of breast [...]
Nanoparticle-Based Vaccine Shows Promise in Fighting Cancer
In a study published in OncoImmunology, researchers from the German Cancer Research Center and Heidelberg University have created a therapeutic vaccine that mobilizes the immune system to target cancer cells. The researchers demonstrated that virus peptides combined [...]
Quantitative imaging method reveals how cells rapidly sort and transport lipids
Lipids are difficult to detect with light microscopy. Using a new chemical labeling strategy, a Dresden-based team led by André Nadler at the Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG) and [...]
Ancient DNA reveals cause of world’s first recorded pandemic
Scientists have confirmed that the Justinian Plague, the world’s first recorded pandemic, was caused by Yersinia pestis, the same bacterium behind the Black Death. Dating back some 1,500 years and long described in historical texts but [...]
“AI Is Not Intelligent at All” – Expert Warns of Worldwide Threat to Human Dignity
Opaque AI systems risk undermining human rights and dignity. Global cooperation is needed to ensure protection. The rise of artificial intelligence (AI) has changed how people interact, but it also poses a global risk to human [...]
Nanomotors: Where Are They Now?
First introduced in 2004, nanomotors have steadily advanced from a scientific curiosity to a practical technology with wide-ranging applications. This article explores the key developments, recent innovations, and major uses of nanomotors today. A [...]
Study Finds 95% of Tested Beers Contain Toxic “Forever Chemicals”
Researchers found PFAS in 95% of tested beers, with the highest levels linked to contaminated local water sources. Per- and polyfluoroalkyl substances (PFAS), better known as forever chemicals, are gaining notoriety for their ability [...]
Long COVID Symptoms Are Closer To A Stroke Or Parkinson’s Disease Than Fatigue
When most people get sick with COVID-19 today, they think of it as a brief illness, similar to a cold. However, for a large number of people, the illness doesn't end there. The World [...]
The world’s first AI Hospital, developed in China is transforming healthcare
Artificial Intelligence and its developments have had a revolutionary impact on society, and healthcare is not an exception. China has made massive strides in AI integrated healthcare, and continues to do so as AI [...]
Scientists Rewire Immune Cells To Supercharge Cancer-Fighting Power
Blocking a single protein boosts T cell metabolism and tumor-fighting strength. The discovery could lead to next-generation cancer immunotherapies. Scientists have identified a strategy to greatly enhance the cancer-fighting abilities of the immune system’s [...]