Polymers containing quantum dots (QDs) are considered crucial components of next-generation consumer items, but ambiguity remains regarding how these compounds may negatively affect public health and the environment.
A pre-proof paper from the Journal of Hazardous Materials examines how the transport of quantum dots out of polymeric materials and into the environment relates to their surface and size properties.
Polymer Nanocomposites (PNCs): Overview and Significance
Integrating nanostructured additives such as quantum dots into polymers is a method of producing innovative hybrid compounds such as polymer nanocomposites (PNCs) with improved thermal, physical, and optical characteristics.
PNCs have numerous applications in manufacturing essential products within aerospace and automotive materials, fire retardants, energy storage systems, packaged foods, and medical equipment.
Polymer-to-Liquid Transfer of Quantum Dots in PNCs
Sustainable PNC production necessitates assessing if nanoparticles such as quantum dots migrate into the external environment. The transmission of quantum dots into the nearby liquid environment is particularly important for PNCs utilized in medical equipment or food processing applications.
Several investigations on polymer-to-liquid transport phenomena in PNCs have revealed that the nanomaterial mass transmitted from these PNCs into the liquid environment is minimal but variable in volume and shape due to differences in nanofiller characteristics, external environment, polymer type, and testing conditions.
Limitations of Previously Used Quantum Dots Transport Models
Theoretical frameworks can aid in the understanding of how quantum dots move from polymeric materials into the environment. While there are various transport models for small molecules, there are only a few significant models in the literature that are explicitly created for nanoparticle compounds, such as quantum dots.
One of the most pressing issues concerning the risk analysis of nanocomposite materials is the absence of data-supported theoretical frameworks for forecasting the movement of quantum dots from PNCs to the external environment.
More knowledge of nanofiller mass transfer characteristics via theory and experiments can greatly enhance PNC manufacturing and design principles, improving sustainability and lowering the negative effects of next-generation PNCs on the environment.
Highlights of the Current Study
In this study, the researchers created a PNC class utilizing low-density polyethylene (LDPE) as a polymer host and cadmium selenide (CdSe) quantum dots in an assortment of sizes. Because quantum dots are widely available, cover a size range of 1-10 nm, and have minimal size dispersibility, they are suitable models for researching nanoparticle movement from PNCs to the surrounding environment.
The photoluminescence (PL) and composition of the produced PNCs were evaluated to understand how integrating quantum dots in LDPE impacts their interface stoichiometry and surface fault concentration. Various migration studies were carried out to correlate the speed of quantum dot movement with the initial quantum dot diameter and surface reactivity.
This information was then utilized to create a semi-empirical model for predicting the transfer of quantum dots out of polymeric materials and into the surrounding fluid environment.
Important Findings
The researchers observed an inverse relationship between the mass of migratory quantum dots and their original diameter due to smaller particles having a greater specific surface area.
This work also introduced the first theoretical framework capable of modeling the complicated migration process of quantum dots. These models were effectively applied to substrates with a wide variety of starting quantum dots sizes and PNC storage durations. To simulate the movement of quantum dots across polymer and environment interfaces, the framework combines the time-dependent mass expulsion of quantum dots with the diffusion equation under simple boundary conditions.
Based on these findings, it is reasonable to conclude that the theoretical framework developed in this study could be a useful and functional tool for assessing quantum dots migration risks to human health and the environment. This framework can also provide new insights into the physical and chemical processes of the nanomaterials movement phenomena that would be challenging to accomplish using only experimental approaches.

News
Does Space-Time Really Exist?
Is time something that flows — or just an illusion? Exploring space-time as either a fixed “block universe” or a dynamic fabric reveals deeper mysteries about existence, change, and the very nature of reality. [...]
Unlocking hidden soil microbes for new antibiotics
Most bacteria cannot be cultured in the lab-and that's been bad news for medicine. Many of our frontline antibiotics originated from microbes, yet as antibiotic resistance spreads and drug pipelines run dry, the soil [...]
By working together, cells can extend their senses beyond their direct environment
The story of the princess and the pea evokes an image of a highly sensitive young royal woman so refined, she can sense a pea under a stack of mattresses. When it comes to [...]
Overworked Brain Cells May Hold the Key to Parkinson’s
Scientists at Gladstone Institutes uncovered a surprising reason why dopamine-producing neurons, crucial for smooth body movements, die in Parkinson’s disease. In mice, when these neurons were kept overactive for weeks, they began to falter, [...]
Old tires find new life: Rubber particles strengthen superhydrophobic coatings against corrosion
Development of highly robust superhydrophobic anti-corrosion coating using recycled tire rubber particles. Superhydrophobic materials offer a strategy for developing marine anti-corrosion materials due to their low solid-liquid contact area and low surface energy. However, [...]
This implant could soon allow you to read minds
Mind reading: Long a science fiction fantasy, today an increasingly concrete scientific goal. Researchers at Stanford University have succeeded in decoding internal language in real time thanks to a brain implant and artificial intelligence. [...]
A New Weapon Against Cancer: Cold Plasma Destroys Hidden Tumor Cells
Cold plasma penetrates deep into tumors and attacks cancer cells. Short-lived molecules were identified as key drivers. Scientists at the Leibniz Institute for Plasma Science and Technology (INP), working with colleagues from Greifswald University Hospital and [...]
This Common Sleep Aid May Also Protect Your Brain From Alzheimer’s
Lemborexant and similar sleep medications show potential for treating tau-related disorders, including Alzheimer’s disease. New research from Washington University School of Medicine in St. Louis shows that a commonly used sleep medication can restore normal sleep patterns and [...]
Sugar-Coated Nanoparticles Boost Cancer Drug Efficacy
A team of researchers at the University of Mississippi has discovered that coating cancer treatment carrying nanoparticles in a sugar-like material increases their treatment efficacy. They reported their findings in Advanced Healthcare Materials. Over a tenth of breast [...]
Nanoparticle-Based Vaccine Shows Promise in Fighting Cancer
In a study published in OncoImmunology, researchers from the German Cancer Research Center and Heidelberg University have created a therapeutic vaccine that mobilizes the immune system to target cancer cells. The researchers demonstrated that virus peptides combined [...]
Quantitative imaging method reveals how cells rapidly sort and transport lipids
Lipids are difficult to detect with light microscopy. Using a new chemical labeling strategy, a Dresden-based team led by André Nadler at the Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG) and [...]
Ancient DNA reveals cause of world’s first recorded pandemic
Scientists have confirmed that the Justinian Plague, the world’s first recorded pandemic, was caused by Yersinia pestis, the same bacterium behind the Black Death. Dating back some 1,500 years and long described in historical texts but [...]
“AI Is Not Intelligent at All” – Expert Warns of Worldwide Threat to Human Dignity
Opaque AI systems risk undermining human rights and dignity. Global cooperation is needed to ensure protection. The rise of artificial intelligence (AI) has changed how people interact, but it also poses a global risk to human [...]
Nanomotors: Where Are They Now?
First introduced in 2004, nanomotors have steadily advanced from a scientific curiosity to a practical technology with wide-ranging applications. This article explores the key developments, recent innovations, and major uses of nanomotors today. A [...]
Study Finds 95% of Tested Beers Contain Toxic “Forever Chemicals”
Researchers found PFAS in 95% of tested beers, with the highest levels linked to contaminated local water sources. Per- and polyfluoroalkyl substances (PFAS), better known as forever chemicals, are gaining notoriety for their ability [...]
Long COVID Symptoms Are Closer To A Stroke Or Parkinson’s Disease Than Fatigue
When most people get sick with COVID-19 today, they think of it as a brief illness, similar to a cold. However, for a large number of people, the illness doesn't end there. The World [...]