In a collaboration between the U.S. Department of Energy’s Ames Laboratory and Northeastern University, scientists have developed a model for predicting the shape of metal nanocrystals or “islands” sandwiched between or below two-dimensional (2D) materials such as graphene. The advance moves 2D quantum materials a step closer to applications in electronics.
Ames Laboratory scientist are experts in 2D materials, and recently discovered a first-of-its-kind copper and graphite combination, produced by depositing copper on ion-bombarded graphite at high temperature and in an ultra-high vacuum environment. This produced a distribution of copper islands, embedded under an ultra-thin “blanket” consisting of a few layers of graphene.
“Because these metal islands can potentially serve as electrical contacts or heat sinks in electronic applications, their shape and how they reach that shape are important pieces of information in controlling the design and synthesis of these materials,” said Pat Thiel, an Ames Laboratory scientist and Distinguished Professor of Chemistry and Materials Science and Engineering at Iowa State University.
Ames Laboratory scientists used scanning tunneling microscopy to painstakingly measure the shapes of more than a hundred nanometer-scale copper islands. This provided the experimental basis for a theoretical model developed jointly by researchers at Northeastern University’s Department of Mechanical and Industrial Engineering and at Ames Laboratory. The model served to explain the data extremely well. The one exception, concerning copper islands less than 10 nm tall, will be the basis for further research.
“We love to see our physics applied, and this was a beautiful way to apply it,” said Scott E. Julien, Ph.D. candidate, at Northeastern. “We were able to model the elastic response of the graphene as it drapes over the copper islands, and use it to predict the shapes of the islands.”
The work showed that the top layer of graphene resists the upward pressure exerted by the growing metal island. In effect, the graphene layer squeezes downward and flattens the copper islands. Accounting for these effects as well as other key energetics leads to the unanticipated prediction of a universal, or size-independent, shape of the islands, at least for sufficiently-large islands of a given metal.
“This principle should work with other metals and other layered materials as well,” said Research Assistant, Ann Lii-Rosales. “Experimentally we want to see if we can use the same recipe to synthesize metals under other types of layered materials with predictable results.”
Image Credit: Ames Laboratory

News This Week
Can our mitochondria help to beat long Covid?
At Cambridge University’s MRC Mitochondrial Biology Unit, Michal Minczuk is one of a growing number of scientists around the world aiming to find new ways of improving mitochondrial health. This line of research could help [...]
Lipid nanoparticles carry gene-editing cancer drugs past tumor defenses
As they grow, solid tumors surround themselves with a thick, hard-to-penetrate wall of molecular defenses. Getting drugs past that barricade is notoriously difficult. Now, scientists at UT Southwestern have developed nanoparticles that can break [...]
Graphene Nanosensor Detects Biomarkers Through Tears
In an article recently published in the journal Talanta, researchers demonstrated a new approach to enable the specific detection of biomarkers in human tear by employing an aptamer-based graphene affinity nanosensor. The ability to detect [...]
How Nanotechnology Can Make a Splash in Aquaculture
Selenium (Se) is an essential element found in aquatic feeds that promotes the proper development, wellbeing, and fitness of marine animals. Selenium can be transformed into nanomaterials that are more easily accessible, absorbed, and consumed by [...]
Super-Resolution Imaging Method For Multiple Fluorescence Microscopy Applications
In an article recently published in the journal Nanotechnology, researchers employed a single particle imaging method for fluorescence excitation with moderate intensity to achieve spatial resolution. Here, the semiconductor nanocrystals were accessed, whose emission lifetimes [...]
Trials to begin on new SA COVID-19 vaccine
A new COVID-19 vaccine developed in South Australia and administered with a needle-free device is to begin human trials. Designed by University of Adelaide researchers the DNA vaccine also targets the Omicron variant of [...]
Towards Carbon Clean Manufacturing with Eco-Friendly Nano-Lubricants
Grinding is an essential manufacturing process, yet the heat due to friction associated with the process causes damage to the part being processed. Lubrication is used to reduce friction; however, traditional petroleum-based lubricants can [...]
Researchers develop hybrid sensor that could help diagnose cancer
A team of researchers from HSE University, Skoltech, MPGU, and MISIS have developed a nanophotonic-microfluidic sensor whose potential applications include cancer detection, monitoring and treatment response assessment. Today, the device can identify gases and [...]
Scientists Develop ‘Nanomachines’ That Can Penetrate And Kill Cancer Cells
Researchers have made a scientific breakthrough with the development of ‘nanomachines’ that can kill cancerous cells. The research team headed by Dr Youngdo Jeong from the Center for Advanced Biomolecular Recognition at the Korea Institute of Science and Technology (KIST) has engineered [...]
Green Method to Make Nanoparticles and Ultrafine Powder
A novel freeze-dissolving approach has been devised that offers greater efficiency and sustainability compared to the classic freeze-drying process to make superfine powder or nanoparticles. In the research published in the journal ACS Sustainable Chemistry & Engineering, sphere-shaped [...]
Participants wanted for study on the regulation of what future AI-driven nanomedicines should look like
Would you like to help in some research on the regulation of what future AI-driven nanomedicines should look like? If so, researchers at the University of Bristol are looking for volunteers to discuss ethical [...]
Could gold nanoparticles help treat cancer?
Gold nanoparticles are minuscule particles made of gold. From drug and gene delivery to photothermal and photodynamic therapies to screening and diagnostic tests to radiation therapy, X-ray imaging and CT scans, these small particles [...]
Carbon Dots Target Nucleolus and Monitor in Real-Time
In an article recently published in the journal Applied Surface Science, the researchers synthesized green fluorescent carbon dots (G-CDs) from 3,5-diaminobenzoic acid and citric acid. The as-prepared G-CDs were used to target the nucleolus and [...]
Green Nanoformulation for Anti-Cancer and Antibacterial Functions
Doxorubicin (DOX) is a powerful anti-cancer medication, and efforts have been made to design nanostructures for delivering it to cancerous cells. The nanostructures increase the cytotoxic effects of DOX on cancerous cells, while reducing the negative effects [...]
New drug delivery system releases therapeutic cargo only when bacteria are present
A team of Brown University researchers has developed a new responsive material that is able to release encapsulated cargo only when pathogenic bacteria are present. The material could be used to make wound dressings [...]
Hairy Cell Leukemia Complicated by Severe COVID-19: A Case Study
Novel three-drug regimen used to manage life-threatening developments. In April 2021, a 42-year-old man reached out to Brian Hill, MD, PhD, for a second opinion after being diagnosed with hairy cell leukemia following a bone [...]
Leave A Comment