Several space missions, planned by both the European Space Agency and NASA, have their target set on Jupiter and its moons. The extraordinarily harsh radiation environments in the Jovian system will set some strict requirements for the electronics inside the spacecraft. To ensure the proper function of the spacecraft, it is important to understand and quantify the physical mechanisms causing the errors in the electronics, specifically by electrons.
In her dissertation at University of Jyväskylä Maris Tali proved that single light particles, like electrons and low energy protons are capable of inducing effects in electronics that are usually not considered.
Modern space missions carry a large amount of highly-integrated electronic devices. One of these missions is the JUICE mission by the European Space Agency (ESA), whose main task is to study the Jovian system and the icy moons of Jupiter. This radiation environment will pose some unique challenges to the mission.
Similarly, high-energy physics experiments often feature environments of extreme radiation. One of these large high-energy accelerators is the Large Hadron Collider at CERN in Geneva, Switzerland. Such accelerators require large amounts of electronics both close to the accelerator ring itself and in nearby shielded alcoves.
“Both the space agencies and the high-energy physics experiments face similar problems when dealing with the harmful effects that radiation poses to electronics. In recent years, the collaboration agreements for example between CERN and ESA are paving the way for tackling these complex problems”, says Maris Tali.

Image Credit:  University of Stuttgart

News This Week

Researchers Discover New Origin of Deep Brain Waves

Understanding hippocampal activity could improve sleep and cognition therapies. Researchers from the University of California, Irvine’s biomedical engineering department have discovered a new origin for two essential brain waves—slow waves and sleep spindles—that are critical for [...]