Silver-based nanoparticle presence in everyday items has surged over the past decade. Silver is an efficient antibacterial agent but can harm the environment. A study published in the journal iScience aims to discern the relationship between microbial activity and silver, providing a means for limiting the unintended environmental impact of silver-based nanoparticles
Silver – An Effective Antibacterial Agent
Silver’s antimicrobial qualities have been known for centuries. Silver containers were revered for their capacity to keep dairy items from spoiling, and the Greeks employed silver creams to treat wound infections. Several commercial goods now use silver, although in a much more effective form.
Silver-based nanoparticles used in fabrics are advertised for their excellent resistance to odors. Medical supplies are readily layered with silver-based nanoparticles to restrict the growth of bacteria. Similarly, silver-based nanoparticles used in paints, countertops, and toys promise long-lasting antimicrobial characteristics.
Effects of Silver Nanoparticles on the Ecosystem
The generation of silver-based nanoparticles currently exceeds 600 metric tons, with most of it contaminating the environment through wastewater and solid waste.
The uncontrolled exposure to silver-based nanoparticles is a rising issue since these nanoparticles may harm naturally existing bacteria, marine environments, and even human health. Therefore, the modification of silver-based nanoparticle toxicity may contribute to enhanced antimicrobial technology and may limit undesirable environmental consequences after disposal.
Controlling silver-based nanoparticle toxicity necessitates controlling nanoparticle dissolution. The duration of this dissolution process is defined by parameters such as pH, the amount of sulfide, dissolved oxygen, the quantity of natural organic matter, and ambient light.
Manipulating Silver’s Toxicity
Silver ions are hazardous to bacteria as they may attach to various proteins, causing their activities to be disrupted. When these silver ions are discharged due to particle breakdown, they account for the majority of the antibacterial activity of silver nanoparticles. No harm is found when all of the oxygen is removed.
Antimicrobial action may be significantly boosted if nanoparticle breakdown is encouraged by acidification. Attempting to manipulate the dissolution of silver-based nanoparticles by changing the aqueous-based solution, on the other hand, might be a daunting prospect for regulating the nanoparticle’s complete existence.
Structure-Activity Relationship (SAR)
The next logical progression in the research of silver-based nanoparticles is to develop a structure-activity relationship (SAR). The optimal SAR would use the structural properties of a silver-based nanoparticle, such as the particle’s dimensions, as input and forecast the dissolution of silver as well as antibacterial activity.
The nanoparticles themselves pose a problem in producing such data. The most common techniques for producing silver-based nanoparticles produce materials with uncontrolled surface characteristics, size, and shape—the accuracy of the activity-structure relationships is reduced.
Basis of the Research
The link between silver-based nanoparticle architecture, silver dissolution, and silver’s antibacterial action was defined by the team. Several synthetic approaches were created or changed to create a massive collection of nanoparticles with individually adjusted surface chemistries, dimensions, and shapes.
The collection of nanoparticles allowed the team to untangle the effect of each variable on the dissolution, demonstrating the link between structural factors and dissolution performance unequivocally.
The team investigated the dynamics and equilibrium behavior of silver-based nanoparticle dissolution utilizing conventional techniques to obtain numerical data for structural characteristics comparison. The team also assessed the antimicrobial ability of similar samples.
Results of the Study
Utilizing a collection of silver-based nanoparticles customized to demonstrate a broad variety of surface chemistries, sizes, and shapes, this study evaluated how silver-based nanoparticle properties affect antibacterial effectiveness and their environmental effect.
The team highlighted that when there is a greater surface area of silver accessible, there is more dissolved silver. Similarly, the team ascertained that tiny particles dissolve to a higher degree than bigger particles for a similar mass fraction of silver, as expected by their proportionately greater surface areas.
For almost all substances, the dissolution rate was proportionate to the amount of dissolution; the nanoparticles that dissolved quicker also dissolved to a greater degree.
The team concluded that these discoveries offer new insight into silver’s chemistry at the nanoscale, and help to make room for the effective and safe usage of silver-based nanoparticles.

News
Why ‘Peniaphobia’ Is Exploding Among Young People (And Why We Should Be Concerned)
An insidious illness is taking hold among a growing proportion of young people. Little known to the general public, peniaphobia—the fear of becoming poor—is gaining ground among teens and young adults. Discover the causes [...]
Team finds flawed data in recent study relevant to coronavirus antiviral development
The COVID pandemic illustrated how urgently we need antiviral medications capable of treating coronavirus infections. To aid this effort, researchers quickly homed in on part of SARS-CoV-2's molecular structure known as the NiRAN domain—an [...]
Drug-Coated Neural Implants Reduce Immune Rejection
Summary: A new study shows that coating neural prosthetic implants with the anti-inflammatory drug dexamethasone helps reduce the body’s immune response and scar tissue formation. This strategy enhances the long-term performance and stability of electrodes [...]
Scientists discover cancer-fighting bacteria that ‘soak up’ forever chemicals in the body
A family of healthy bacteria may help 'soak up' toxic forever chemicals in the body, warding off their cancerous effects. Forever chemicals, also known as PFAS (per- and polyfluoroalkyl substances), are toxic chemicals that [...]
Johns Hopkins Researchers Uncover a New Way To Kill Cancer Cells
A new study reveals that blocking ribosomal RNA production rewires cancer cell behavior and could help treat genetically unstable tumors. Researchers at the Johns Hopkins Kimmel Cancer Center and the Department of Radiation Oncology and Molecular [...]
AI matches doctors in mapping lung tumors for radiation therapy
In radiation therapy, precision can save lives. Oncologists must carefully map the size and location of a tumor before delivering high-dose radiation to destroy cancer cells while sparing healthy tissue. But this process, called [...]
Scientists Finally “See” Key Protein That Controls Inflammation
Researchers used advanced microscopy to uncover important protein structures. For the first time, two important protein structures in the human body are being visualized, thanks in part to cutting-edge technology at the University of [...]
AI tool detects 9 types of dementia from a single brain scan
Mayo Clinic researchers have developed a new artificial intelligence (AI) tool that helps clinicians identify brain activity patterns linked to nine types of dementia, including Alzheimer's disease, using a single, widely available scan—a transformative [...]
Is plastic packaging putting more than just food on your plate?
New research reveals that common food packaging and utensils can shed microscopic plastics into our food, prompting urgent calls for stricter testing and updated regulations to protect public health. Beyond microplastics: The analysis intentionally [...]
Aging Spreads Through the Bloodstream
Summary: New research reveals that aging isn’t just a local cellular process—it can spread throughout the body via the bloodstream. A redox-sensitive protein called ReHMGB1, secreted by senescent cells, was found to trigger aging features [...]
AI and nanomedicine find rare biomarkers for prostrate cancer and atherosclerosis
Imagine a stadium packed with 75,000 fans, all wearing green and white jerseys—except one person in a solid green shirt. Finding that person would be tough. That's how hard it is for scientists to [...]
Are Pesticides Breeding the Next Pandemic? Experts Warn of Fungal Superbugs
Fungicides used in agriculture have been linked to an increase in resistance to antifungal drugs in both humans and animals. Fungal infections are on the rise, and two UC Davis infectious disease experts, Dr. George Thompson [...]
Scientists Crack the 500-Million-Year-Old Code That Controls Your Immune System
A collaborative team from Penn Medicine and Penn Engineering has uncovered the mathematical principles behind a 500-million-year-old protein network that determines whether foreign materials are recognized as friend or foe. How does your body [...]
Team discovers how tiny parts of cells stay organized, new insights for blocking cancer growth
A team of international researchers led by scientists at City of Hope provides the most thorough account yet of an elusive target for cancer treatment. Published in Science Advances, the study suggests a complex signaling [...]
Nanomaterials in Ophthalmology: A Review
Eye diseases are becoming more common. In 2020, over 250 million people had mild vision problems, and 295 million experienced moderate to severe ocular conditions. In response, researchers are turning to nanotechnology and nanomaterials—tools that are transforming [...]
Natural Plant Extract Removes up to 90% of Microplastics From Water
Researchers found that natural polymers derived from okra and fenugreek are highly effective at removing microplastics from water. The same sticky substances that make okra slimy and give fenugreek its gel-like texture could help [...]