Researchers at UC San Francisco have identified a biological process that may explain why exercise sharpens thinking and memory. Their findings suggest that physical activity strengthens the brain’s built in defense system, helping protect it from age related damage.
As people grow older, the blood-brain barrier becomes more fragile. This tightly packed network of blood vessels normally shields the brain from harmful substances circulating in the bloodstream. Over time, however, it can become leaky, allowing damaging compounds to enter brain tissue. The result is inflammation, which is linked to cognitive decline and is commonly seen in disorders such as Alzheimer’s disease.
Several years ago, the research team discovered that exercising mice produced higher levels of an enzyme called GPLD1 in their livers. GPLD1 appeared to rejuvenate the brain, but there was a mystery. The enzyme itself cannot cross into the brain, leaving scientists unsure how it delivered its cognitive benefits.
The new research provides an answer.
How GPLD1 Reduces Brain Inflammation
The scientists found that GPLD1 influences another protein known as TNAP. As mice age, TNAP builds up in the cells that form the blood-brain barrier. This buildup weakens the barrier and increases leakiness. When mice exercise, their livers release GPLD1 into the bloodstream. The enzyme travels to the blood vessels surrounding the brain and removes TNAP from the surface of those cells, helping restore the barrier’s integrity.
“This discovery shows just how relevant the body is for understanding how the brain declines with age,” said Saul Villeda, PhD, associate director of the UCSF Bakar Aging Research Institute.
Villeda is the senior author of the paper, which was published in the journal Cell on Feb. 18.
Pinpointing TNAP’s Role in Cognitive Decline
To determine how GPLD1 exerts its effects, the team focused on what the enzyme does best. GPLD1 cuts specific proteins from the surface of cells. Researchers searched for tissues containing proteins that could serve as targets and suspected that some of these proteins might accumulate with age.
Cells in the blood-brain barrier stood out because they carried several possible GPLD1 targets. When the scientists tested these proteins in the lab, only one was trimmed by GPLD1: TNAP.
Further experiments confirmed TNAP’s importance. Young mice genetically modified to produce excess TNAP in the blood-brain barrier showed memory and cognitive problems similar to those seen in older animals.
When researchers reduced TNAP levels in 2-year-old mice — which are the equivalent of 70 human years — the blood-brain barrier became less permeable, inflammation decreased, and the animals performed better on memory tests.
“We were able to tap into this mechanism late in life, for the mice, and it still worked,” said Gregor Bieri, PhD, a postdoctoral scholar in Villeda’s lab and co-first author of the study.
Implications for Alzheimer’s and Brain Aging
The findings suggest that developing medications capable of trimming proteins such as TNAP could offer a new strategy to restore the blood brain barrier, even after it has been weakened by aging.
“We’re uncovering biology that Alzheimer’s research has largely overlooked,” Villeda said. “It may open new therapeutic possibilities beyond the traditional strategies that focus almost exclusively on the brain.”
Authors: Other UCSF authors are Karishma Pratt, PhD; Yasuhiro Fuseya, MD, PhD; Turan Aghayev, MD; Juliana Sucharov; Alana Horowitz, PhD; Amber Philp, PhD; Karla Fonseca-Valencia, degree; Rebecca Chu; Mason Phan; Laura Remesal, PhD; Andrew Yang, PhD; and Kaitlin Casaletto, PhD. For all authors, see the paper.
Funding: The study was supported in part by National Institutes of Health (AG081038, AG086042, AG082414, AG077770, AG067740, P30 DK063720); Simons Foundation; Bakar Family Foundation; Cure Alzheimer’s Fund; Hillblom Foundation; Glenn Foundation; JSPS; Japanese Biochemistry Postdoctoral Fellowship; Multiple Sclerosis Foundation; Frontiers in Medical Research; American Federation for Aging Research; National Science Foundation; Bakar Aging Research Institute; Marc and Lynne Benioff.
News
Scientists reveal how exercise protects the brain from Alzheimer’s
Researchers at UC San Francisco have identified a biological process that may explain why exercise sharpens thinking and memory. Their findings suggest that physical activity strengthens the brain's built in defense system, helping protect [...]
NanoMedical Brain/Cloud Interface – Explorations and Implications. A new book from Frank Boehm
New book from Frank Boehm, NanoappsMedical Inc Founder: This book explores the future hypothetical possibility that the cerebral cortex of the human brain might be seamlessly, safely, and securely connected with the Cloud via [...]
Deadly Pancreatic Cancer Found To “Wire Itself” Into the Body’s Nerves
A newly discovered link between pancreatic cancer and neural signaling reveals a promising drug target that slows tumor growth by blocking glutamate uptake. Pancreatic cancer is among the most deadly cancers, and scientists are [...]
This Simple Brain Exercise May Protect Against Dementia for 20 Years
A long-running study following thousands of older adults suggests that a relatively brief period of targeted brain training may have effects that last decades. Starting in the late 1990s, close to 3,000 older adults [...]
Scientists Crack a 50-Year Tissue Mystery With Major Cancer Implications
Researchers have resolved a 50-year-old scientific mystery by identifying the molecular mechanism that allows tissues to regenerate after severe damage. The discovery could help guide future treatments aimed at reducing the risk of cancer [...]
This New Blood Test Can Detect Cancer Before Tumors Appear
A new CRISPR-powered light sensor can detect the faintest whispers of cancer in a single drop of blood. Scientists have created an advanced light-based sensor capable of identifying extremely small amounts of cancer biomarkers [...]
Blindness Breakthrough? This Snail Regrows Eyes in 30 Days
A snail that regrows its eyes may hold the genetic clues to restoring human sight. Human eyes are intricate organs that cannot regrow once damaged. Surprisingly, they share key structural features with the eyes [...]
This Is Why the Same Virus Hits People So Differently
Scientists have mapped how genetics and life experiences leave lasting epigenetic marks on immune cells. The discovery helps explain why people respond so differently to the same infections and could lead to more personalized [...]
Rejuvenating neurons restores learning and memory in mice
EPFL scientists report that briefly switching on three “reprogramming” genes in a small set of memory-trace neurons restored memory in aged mice and in mouse models of Alzheimer’s disease to level of healthy young [...]
New book from Nanoappsmedical Inc. – Global Health Care Equivalency
A new book by Frank Boehm, NanoappsMedical Inc. Founder. This groundbreaking volume explores the vision of a Global Health Care Equivalency (GHCE) system powered by artificial intelligence and quantum computing technologies, operating on secure [...]
New Molecule Blocks Deadliest Brain Cancer at Its Genetic Root
Researchers have identified a molecule that disrupts a critical gene in glioblastoma. Scientists at the UVA Comprehensive Cancer Center say they have found a small molecule that can shut down a gene tied to glioblastoma, a [...]
Scientists Finally Solve a 30-Year-Old Cancer Mystery Hidden in Rye Pollen
Nearly 30 years after rye pollen molecules were shown to slow tumor growth in animals, scientists have finally determined their exact three-dimensional structures. Nearly 30 years ago, researchers noticed something surprising in rye pollen: [...]
How lipid nanoparticles carrying vaccines release their cargo
A study from FAU has shown that lipid nanoparticles restructure their membrane significantly after being absorbed into a cell and ending up in an acidic environment. Vaccines and other medicines are often packed in [...]
New book from NanoappsMedical Inc – Molecular Manufacturing: The Future of Nanomedicine
This book explores the revolutionary potential of atomically precise manufacturing technologies to transform global healthcare, as well as practically every other sector across society. This forward-thinking volume examines how envisaged Factory@Home systems might enable the cost-effective [...]
A Virus Designed in the Lab Could Help Defeat Antibiotic Resistance
Scientists can now design bacteria-killing viruses from DNA, opening a faster path to fighting superbugs. Bacteriophages have been used as treatments for bacterial infections for more than a century. Interest in these viruses is rising [...]
Sleep Deprivation Triggers a Strange Brain Cleanup
When you don’t sleep enough, your brain may clean itself at the exact moment you need it to think. Most people recognize the sensation. After a night of inadequate sleep, staying focused becomes harder [...]














