The findings could lead to a cure for LAM.
Researchers from the University of Cincinnati may have identified a potential treatment for lymphangioleiomyomatosis (LAM), a rare lung condition resembling cancer found predominantly in women of reproductive age.
The exact cause of LAM remains a mystery, and no known cure exists. However, new research funded by the National Heart, Lung, and Blood Institute have revealed that two currently available drugs could be promising in treating LAM, potentially paving the way for a cure.
The study was recently published in the journal Science Advances.
Olatoke says sirolimus, the only Food and Drug Administration-approved drug and current medication of choice for treating LAM, is not optimally efficient and does not cure LAM. The biggest questions facing scientists studying LAM include where these cells come from and why they have such a strong affinity for the lungs. The greatest challenge to finding a cure for LAM is that its underlying mechanism is not completely understood.
"We identified a novel pathway that is dysregulated in LAM," Olatoke says. "We found two drugs that target this pathway. We are examining both of those drugs to see how we can use them to reduce the progression of LAM."
Olatoke says once they confirmed that the pathway was dysregulated, they treated cells from those patients with the drug and discovered that, by treating the cells, they were able to kill those tumor cells. The researchers also tried an animal model where they injected the cells that come from patients into them and by treating them with the drug, they were able to limit the survival of the tumor cells and reduce their progression in the lungs as well as limiting tumor development.
"This is an entirely new direction because it has not been explored at all," Olatoke says. "We do not know where the cells that enter and destroy the lungs come from, but through our findings, we think that the cells come from the uterus. We think that this pathway is originally dysregulated in the uterus, and the cells move from the uterus to the lungs. Nobody has shown that nobody knows where the cells come from, so this is the first evidence-backed proof in the field showing that maybe the cells come from the uterus."
Olatoke says one of the more satisfying aspects of this research is working with LAM patients, and notes that June is Worldwide LAM Awareness Month.
"They are the nicest, kindest people ever," she says. "They are going through so much, but they show empathy, they support our research. This study was partly sponsored by them.
"They are just warm and genuine people who really want a cure. They support our research by taking part in clinical trials and being active. Everything we request for our research, they are always ready to help. It's a beautiful community," Olatoke says.
"Another rewarding part, especially with this paper, was working with multiple investigators across different institutions," she says. "The paper is a brainchild of multiple talented investigators across UC, [Cincinnati Children's Hospital Medical Center] and Texas Tech — a beautiful testament to how collaboration positively drives science."
According to Olatoke, the findings provide the first proof-of-concept for the potential therapeutic benefit of targeting the pathway signaling in LAM as well as diseases related to tuberous sclerosis complex, a rare genetic disorder that causes benign tumors and lesions. The possibility of what this research could lead to is what excites her about this study.
"It's the hope that we can find therapeutic strategies to cure LAM," Olatoke says. "What inspires me every day to continue doing this research is that hopefully we can find something that can be useful to LAM patients."
Reference: "Single-cell multiomic analysis identifies a HOX-PBX gene network regulating the survival of lymphangioleiomyomatosis cells" by Tasnim Olatoke, Andrew Wagner, Aristotelis Astrinidis, Erik Y. Zhang, Minzhe Guo, Alan G. Zhang, Ushodaya Mattam, Elizabeth J. Kopras, Nishant Gupta, Eric P. Smith, Magdalena Karbowniczek, Maciej M. Markiewski, Kathryn A. Wikenheiser-Brokamp, Jeffrey A. Whitsett, Francis X. McCormack, Yan Xu and Jane J. Yu, 10 May 2023, Science Advances.
DOI: 10.1126/sciadv.adf8549
News
These two viruses may become the next public health threats, scientists say
Two emerging pathogens with animal origins—influenza D virus and canine coronavirus—have so far been quietly flying under the radar, but researchers warn conditions are ripe for the viruses to spread more widely among humans. [...]
COVID-19 viral fragments shown to target and kill specific immune cells
COVID-19 viral fragments shown to target and kill specific immune cells in UCLA-led study Clues about extreme cases and omicron’s effects come from a cross-disciplinary international research team New research shows that after the [...]
Smaller Than a Grain of Salt: Engineers Create the World’s Tiniest Wireless Brain Implant
A salt-grain-sized neural implant can record and transmit brain activity wirelessly for extended periods. Researchers at Cornell University, working with collaborators, have created an extremely small neural implant that can sit on a grain of [...]
Scientists Develop a New Way To See Inside the Human Body Using 3D Color Imaging
A newly developed imaging method blends ultrasound and photoacoustics to capture both tissue structure and blood-vessel function in 3D. By blending two powerful imaging methods, researchers from Caltech and USC have developed a new way to [...]
Brain waves could help paralyzed patients move again
People with spinal cord injuries often lose the ability to move their arms or legs. In many cases, the nerves in the limbs remain healthy, and the brain continues to function normally. The loss of [...]
Scientists Discover a New “Cleanup Hub” Inside the Human Brain
A newly identified lymphatic drainage pathway along the middle meningeal artery reveals how the human brain clears waste. How does the brain clear away waste? This task is handled by the brain’s lymphatic drainage [...]
New Drug Slashes Dangerous Blood Fats by Nearly 40% in First Human Trial
Scientists have found a way to fine-tune a central fat-control pathway in the liver, reducing harmful blood triglycerides while preserving beneficial cholesterol functions. When we eat, the body turns surplus calories into molecules called [...]
A Simple Brain Scan May Help Restore Movement After Paralysis
A brain cap and smart algorithms may one day help paralyzed patients turn thought into movement—no surgery required. People with spinal cord injuries often experience partial or complete loss of movement in their arms [...]
Plant Discovery Could Transform How Medicines Are Made
Scientists have uncovered an unexpected way plants make powerful chemicals, revealing hidden biological connections that could transform how medicines are discovered and produced. Plants produce protective chemicals called alkaloids as part of their natural [...]
Scientists Develop IV Therapy That Repairs the Brain After Stroke
New nanomaterial passes the blood-brain barrier to reduce damaging inflammation after the most common form of stroke. When someone experiences a stroke, doctors must quickly restore blood flow to the brain to prevent death. [...]
Analyzing Darwin’s specimens without opening 200-year-old jars
Scientists have successfully analyzed Charles Darwin's original specimens from his HMS Beagle voyage (1831 to 1836) to the Galapagos Islands. Remarkably, the specimens have been analyzed without opening their 200-year-old preservation jars. Examining 46 [...]
Scientists discover natural ‘brake’ that could stop harmful inflammation
Researchers at University College London (UCL) have uncovered a key mechanism that helps the body switch off inflammation—a breakthrough that could lead to new treatments for chronic diseases affecting millions worldwide. Inflammation is the [...]
A Forgotten Molecule Could Revive Failing Antifungal Drugs and Save Millions of Lives
Scientists have uncovered a way to make existing antifungal drugs work again against deadly, drug-resistant fungi. Fungal infections claim millions of lives worldwide each year, and current medical treatments are failing to keep pace. [...]
Scientists Trap Thyme’s Healing Power in Tiny Capsules
A new micro-encapsulation breakthrough could turn thyme’s powerful health benefits into safer, smarter nanodoses. Thyme extract is often praised for its wide range of health benefits, giving it a reputation as a natural medicinal [...]
Scientists Develop Spray-On Powder That Instantly Seals Life-Threatening Wounds
KAIST scientists have created a fast-acting, stable powder hemostat that stops bleeding in one second and could significantly improve survival in combat and emergency medicine. Severe blood loss remains the primary cause of death from [...]
Oceans Are Struggling To Absorb Carbon As Microplastics Flood Their Waters
New research points to an unexpected way plastic pollution may be influencing Earth’s climate system. A recent study suggests that microscopic plastic pollution is reducing the ocean’s capacity to take in carbon dioxide, a [...]















