Scientists have discovered a new way to activate G-protein coupled receptors from inside cells, a breakthrough that helps develop drugs without side effects.
Have you ever wondered how drugs reach their targets and achieve their function within our bodies? Imagine the drug molecule or ligand as a message, and the cell membrane receptor serving as the inbox. One such receptor tasked with transmitting molecular signals is the G protein-coupled receptor (GPCR).
Interestingly, around one-third of all existing drugs work by controlling the activation of this protein. Japanese researchers now reveal a new way of activating GPCR by triggering shape changes in the intracellular region of the receptor. This new process can help researchers design drugs with fewer or no side effects.
If the cell membrane is like an Oreo cookie sandwich, GPCR is like a snake with seven segments traversing in and out of the cookie sandwich surface. The extracellular loops are the inbox for messages. When a message molecule binds to the extracellular side of the receptor, it triggers a shape change activating G proteins and the ß-arrestin protein attached to the intracellular side of the receptor. Like a molecular relay, the information passes downstream and affects various bodily processes. That is how we see, smell, and taste, which are sensations of light, smell, and taste messages.
A team of researchers headed by Osamu Nureki, a professor at the University of Tokyo, and his lab, discovered a new receptor activation mode of a bone metabolism-related GPCR called human parathyroid hormone type 1 receptor (PTH1R) without signal transduction from the extracellular side.
“Understanding the molecular mechanism will enable us to design optimal drugs,” says Kazuhiro Kobayashi, a doctoral student and an author of the study. Such a drug offers “a promising treatment for osteoporosis.”
Kobayashi has been conducting research on bone formation in animal models since he was an undergrad. “Treatments for osteoporosis that target PTH1R require strict dosage, have administrative restrictions, and there aren’t yet any better alternatives,” he says. That motivated their team to look for better drug design strategies targeting the parathyroid hormone receptor.
To understand function through structure, they used cryo-electron microscopy and revealed the 3D structure of the PTH1R and G protein bound to a message molecule. The team synthesized a non-peptide message molecule called PCO371 which binds to the intracellular region of the receptor and interacts directly with G protein subunits. In other words, PCO371 activates the receptor after entering the cell.
The PCO371-bound PTH1R structure can directly and stably modulate the intracellular side of PTH1R. And because PCO371 activates only G protein and not ß-arrestin it does not cause side effects. This specificity of its binding and receptor activation mode makes it a suitable candidate for potential small-molecule-based drugs for class B1 GPCRs, like PTH1R, which currently lack oral administrative drug ligands. Such drugs would have reduced adverse effects and burdens on patients as they act on specific molecular pathways.
The findings from this study will help “develop new drugs for disorders such as obesity, pain, osteoporosis, and neurological disorders.”
Reference: “Class B1 GPCR activation by an intracellular agonist” by Kazuhiro Kobayashi, Kouki Kawakami, Tsukasa Kusakizako, Atsuhiro Tomita, Michihiro Nishimura, Kazuhiro Sawada, Hiroyuki H. Okamoto, Suzune Hiratsuka, Gaku Nakamura, Riku Kuwabara, Hiroshi Noda, Hiroyasu Muramatsu, Masaru Shimizu, Tomohiko Taguchi, Asuka Inoue, Takeshi Murata and Osamu Nureki, 7 June 2023, Nature.
DOI: 10.1038/s41586-023-06169-3

News
How the FDA opens the door to risky chemicals in America’s food supply
Lining the shelves of American supermarkets are food products with chemicals linked to health concerns. To a great extent, the FDA allows food companies to determine for themselves whether their ingredients and additives are [...]
Superbug crisis could get worse, killing nearly 40 million people by 2050
The number of lives lost around the world due to infections that are resistant to the medications intended to treat them could increase nearly 70% by 2050, a new study projects, further showing the [...]
How Can Nanomaterials Be Programmed for Different Applications?
Nanomaterials are no longer just small—they are becoming smart. Across fields like medicine, electronics, energy, and materials science, researchers are now programming nanomaterials to behave in intentional, responsive ways. These advanced materials are designed [...]
Microplastics Are Invading Our Arteries, and It Could Be Increasing Your Risk of Stroke
Higher levels of micronanoplastics were found in carotid artery plaque, especially in people with stroke symptoms, suggesting a potential new risk factor. People with plaque buildup in the arteries of their neck have been [...]
Gene-editing therapy shows early success in fighting advanced gastrointestinal cancers
Researchers at the University of Minnesota have completed a first-in-human clinical trial testing a CRISPR/Cas9 gene-editing technique to help the immune system fight advanced gastrointestinal (GI) cancers. The results, recently published in The Lancet Oncology, show encouraging [...]
Engineered extracellular vesicles facilitate delivery of advanced medicines
Graphic abstract of the development of VEDIC and VFIC systems for high efficiency intracellular protein delivery in vitro and in vivo. Credit: Nature Communications (2025). DOI: 10.1038/s41467-025-59377-y. https://www.nature.com/articles/s41467-025-59377-y Researchers at Karolinska Institutet have developed a technique [...]
Brain-computer interface allows paralyzed users to customize their sense of touch
University of Pittsburgh School of Medicine scientists are one step closer to developing a brain-computer interface, or BCI, that allows people with tetraplegia to restore their lost sense of touch. While exploring a digitally [...]
Scientists Flip a Gut Virus “Kill Switch” – Expose a Hidden Threat in Antibiotic Treatment
Scientists have long known that bacteriophages, viruses that infect bacteria, live in our gut, but exactly what they do has remained elusive. Researchers developed a clever mouse model that can temporarily eliminate these phages [...]
Enhanced Antibacterial Polylactic Acid-Curcumin Nanofibers for Wound Dressing
Background Wound healing is a complex physiological process that can be compromised by infection and impaired tissue regeneration. Conventional dressings, typically made from natural fibers such as cotton or linen, offer limited functionality. Nanofiber [...]
Global Nanomaterial Regulation: A Country-by-Country Comparison
Nanomaterials are materials with at least one dimension smaller than 100 nanometres (about 100,000 times thinner than a human hair). Because of their tiny size, they have unique properties that can be useful in [...]
Pandemic Potential: Scientists Discover 3 Hotspots of Deadly Emerging Disease in the US
Virginia Tech researchers discovered six new rodent carriers of hantavirus and identified U.S. hotspots, highlighting the virus’s adaptability and the impact of climate and ecology on its spread. Hantavirus recently drew public attention following reports [...]
Studies detail high rates of long COVID among healthcare, dental workers
Researchers have estimated approximately 8% of Americas have ever experienced long COVID, or lasting symptoms, following an acute COVID-19 infection. Now two recent international studies suggest that the percentage is much higher among healthcare workers [...]
Melting Arctic Ice May Unleash Ancient Deadly Diseases, Scientists Warn
Melting Arctic ice increases human and animal interactions, raising the risk of infectious disease spread. Researchers urge early intervention and surveillance. Climate change is opening new pathways for the spread of infectious diseases such [...]
Scientists May Have Found a Secret Weapon To Stop Pancreatic Cancer Before It Starts
Researchers at Cold Spring Harbor Laboratory have found that blocking the FGFR2 and EGFR genes can stop early-stage pancreatic cancer from progressing, offering a promising path toward prevention. Pancreatic cancer is expected to become [...]
Breakthrough Drug Restores Vision: Researchers Successfully Reverse Retinal Damage
Blocking the PROX1 protein allowed KAIST researchers to regenerate damaged retinas and restore vision in mice. Vision is one of the most important human senses, yet more than 300 million people around the world are at [...]
Differentiating cancerous and healthy cells through motion analysis
Researchers from Tokyo Metropolitan University have found that the motion of unlabeled cells can be used to tell whether they are cancerous or healthy. They observed malignant fibrosarcoma [...]