An NIH-supported initiative seeks to unravel how the nervous system tracks and regulates the body's internal organs.
How does your brain recognize when it's time to take a breath, when your blood pressure has fallen, or when your body is fighting an infection? The key lies in interoception, a little-known process through which the nervous system constantly monitors and interprets internal signals to keep essential body functions stable.
Researchers from Scripps Research and the Allen Institute have been awarded the National Institutes of Health (NIH) Director's Transformative Research Award to develop the first comprehensive map, or atlas, of this internal sensory network.
The project will be led by Nobel Prize–winning neuroscientist Ardem Patapoutian, in collaboration with Li Ye, the N. Paul Whittier Chair in Chemistry and Chemical Biology at Scripps Research, and Bosiljka Tasic, Director of Molecular Genetics at the Allen Institute. Xin Jin, Associate Professor at Scripps Research, will serve as co-investigator and head the genomic and cell-type identification portion of the project. The initiative is supported by $14.2 million in NIH funding over the next five years.
"My team is honored that the NIH is supporting the kind of collaborative science needed to study such a complex system," says Patapoutian, the Presidential Endowed Chair in Neurobiology at Scripps Research.
Decoding the Signals Within
Patapoutian, who shared the 2021 Nobel Prize in Physiology or Medicine for discovering cellular sensors of touch, will use the NIH award with his team to decode interoception.
"We hope our results will help other scientists ask new questions about how internal organs and the nervous system stay in sync," adds Ye. Like Patapoutian, he's also a Howard Hughes Medical Institute Investigator.

Established in 2009, the Transformative Research Award supports interdisciplinary projects that cross conventional boundaries and open new directions in science. This accolade is part of the NIH Common Fund's High-Risk, High-Reward Research program, which promotes ideas aimed at filling major gaps in our understanding of human health—the kind of endeavors that might struggle to gain funding through traditional channels.
Unlike classic senses, such as smell, sight, and hearing—which are external and rely on specialized sensory organs—interoception operates through a network of neural pathways that monitor functions like circulation, digestion, and immune activity. Because these signals come from deep within the body and are often processed outside conscious awareness, interoception is often described as our "hidden sixth sense."
Despite its importance, interoception has been historically neglected because of its complexity. Signals from internal organs spread widely, often overlap, and are difficult to isolate and measure. Sensory neurons that carry these messages weave through tissues—ranging from the heart and lungs to the stomach and kidneys—without clear anatomical boundaries.
Building the First Interoceptive Atlas
With support from the NIH, the team will chart how sensory neurons connect to a wide range of internal organs, including the heart and gastrointestinal tract. Using their findings, the researchers aim to build a comprehensive atlas that anatomically and molecularly catalogs these neural pathways.
The anatomical part of the project will label sensory neurons and then apply whole-body imaging to follow their paths from the spinal cord into different organs, generating a detailed 3D map of the routes and branching patterns. In the molecular component, the team will use genetic profiling to identify the various cell types of sensory neurons—for example, showing how neurons that send signals from the gut differ from those linked to the bladder or fat. Together, these complementary datasets will produce the first standardized framework for mapping the body's internal sensory wiring.
By decoding interoception, the team also hopes to uncover core principles of body-brain communication that could guide new approaches to treating disease. Dysregulation of interoceptive pathways has been implicated in conditions ranging from autoimmune disorders and chronic pain to neurodegeneration and high blood pressure.
"Interoception is fundamental to nearly every aspect of health, but it remains a largely unexplored frontier of neuroscience," says Jin, who's a Howard Hughes Medical Institute Freeman Hrabowski Scholar. "By creating the first atlas of this system, we aim to lay the foundation for better understanding how the brain keeps the body in balance, how that balance can be disrupted in disease, and how we might restore it."

News
Scientists Begin $14.2 Million Project To Decode the Body’s “Hidden Sixth Sense”
An NIH-supported initiative seeks to unravel how the nervous system tracks and regulates the body’s internal organs. How does your brain recognize when it’s time to take a breath, when your blood pressure has [...]
Scientists Discover a New Form of Ice That Shouldn’t Exist
Researchers at the European XFEL and DESY are investigating unusual forms of ice that can exist at room temperature when subjected to extreme pressure. Ice comes in many forms, even when made of nothing but water [...]
Nobel-winning, tiny ‘sponge crystals’ with an astonishing amount of inner space
The 2025 Nobel Prize in chemistry was awarded to Richard Robson, Susumu Kitagawa and Omar Yaghi on Oct. 8, 2025, for the development of metal-organic frameworks, or MOFs, which are tunable crystal structures with extremely [...]
Harnessing Green-Synthesized Nanoparticles for Water Purification
A new review reveals how plant- and microbe-derived nanoparticles can power next-gen water disinfection, delivering cleaner, safer water without the environmental cost of traditional treatments. A recent review published in Nanomaterials highlights the potential of green-synthesized nanomaterials (GSNMs) in [...]
Brainstem damage found to be behind long-lasting effects of severe Covid-19
Damage to the brainstem - the brain's 'control center' - is behind long-lasting physical and psychiatric effects of severe Covid-19 infection, a study suggests. Using ultra-high-resolution scanners that can see the living brain in [...]
CT scan changes over one year predict outcomes in fibrotic lung disease
Researchers at National Jewish Health have shown that subtle increases in lung scarring, detected by an artificial intelligence-based tool on CT scans taken one year apart, are associated with disease progression and survival in [...]
AI Spots Hidden Signs of Disease Before Symptoms Appear
Researchers suggest that examining the inner workings of cells more closely could help physicians detect diseases earlier and more accurately match patients with effective therapies. Researchers at McGill University have created an artificial intelligence tool capable of uncovering [...]
Breakthrough Blood Test Detects Head and Neck Cancer up to 10 Years Before Symptoms
Mass General Brigham’s HPV-DeepSeek test enables much earlier cancer detection through a blood sample, creating a new opportunity for screening HPV-related head and neck cancers. Human papillomavirus (HPV) is responsible for about 70% of [...]
Study of 86 chikungunya outbreaks reveals unpredictability in size and severity
The symptoms come on quickly—acute fever, followed by debilitating joint pain that can last for months. Though rarely fatal, the chikungunya virus, a mosquito-borne illness, can be particularly severe for high-risk individuals, including newborns and older [...]
Tiny Fat Messengers May Link Obesity to Alzheimer’s Plaque Buildup
Summary: A groundbreaking study reveals how obesity may drive Alzheimer’s disease through tiny messengers called extracellular vesicles released from fat tissue. These vesicles carry lipids that alter how quickly amyloid-β plaques form, a hallmark of [...]
Ozone exposure weakens lung function and reshapes the oral microbiome
Scientists reveal that short-term ozone inhalation doesn’t just harm the lungs; it reshapes the microbes in your mouth, with men facing the greatest risks. Ozone is a toxic environmental pollutant with wide-ranging effects on [...]
New study reveals molecular basis of Long COVID brain fog
Even though many years have passed since the start of the COVID-19 pandemic, the effects of infection with SARS-CoV-2 are not completely understood. This is especially true for Long COVID, a chronic condition that [...]
Scientists make huge Parkinson’s breakthrough as they discover ‘protein trigger’
Scientists have, for the first time, directly visualised the protein clusters in the brain believed to trigger Parkinson's disease, bringing them one step closer to potential treatments. Parkinson's is a progressive incurable neurological disorder [...]
Alpha amino acids’ stability may explain their role as early life’s protein building blocks
A new study from the Hebrew University of Jerusalem published in the Proceedings of the National Academy of Sciences sheds light on one of life's greatest mysteries: why biology is based on a very specific set [...]
3D bioprinting advances enable creation of artificial blood vessels with layered structures
To explore possible treatments for various diseases, either animal models or human cell cultures are usually used first; however, animal models do not always mimic human diseases well, and cultures are far removed [...]
Drinking less water daily spikes your stress hormone
Researchers discovered that people who don’t drink enough water react with sharper cortisol spikes during stressful events, explaining why poor hydration is tied to long-term health risks. A recent study in the Journal of Applied [...]