- For 400 million years, a leading hypothesis claims, Earth was an “RNA World,” meaning that life must’ve first replicated from RNA before the arrival of proteins and DNA.
- Unfortunately, scientists have failed to find evidence of this “first replicator” or recreate the replication process in the lab under the conditions that conceivably would have been present on the planet billions of years ago.
- In a new study, using three-letter “triplet” RNA, scientists induced RNA replication by preventing the RNA double helix from zipping together.
Where did we all come from? It’s a question that has lit fires of curiosity in philosophers, theologians, and more recently (at least, historically speaking) scientists for millennia. While the the older guard of high thought used stories or metaphors to derive life’s origin story, scientists instead learn about the inner workings of life’s smallest building blocks in an attempt to understand how they first formed life billions of years ago.
This long scientific exploration has led most evolutionary biologists to the conclusion that, for at least 400 million years, Earth was an “RNA World.” The hypothesis suggests that life first took form due to self-replicating RNA, before the evolutionary arrival of DNA or even proteins.
But there’s a couple problems.
First, there’s no trace of this “first replicator” in known biology. And second, scientists have failed to convincingly replicate RNA in an environment similar to early Earth. While scientists are very much still on the hunt for evidence that validates the first of these two issues, a team from University College of London (UCL) is closing in on solving the second problem.
Published in the journal Nature Chemistry, a team of UCL scientists (along with experts from the MRC Laboratory of Molecular Biology in Cambridge) used three-letter “triplet” RNA building blocks subjected to acid and heat in water. This separated the RNA double-helix—the structure that makes replication so difficult—and scientists froze the solution.
What occurred next is possibly an intimate glimpse of how life first formed on Earth—between the liquid gaps of the ice crystals, these building blocks coated the RNA strands and prevented them from zipping back together. After the scientists thawed the solution and and made adjustments to pH and temperature, the RNA replicated again and again. Eventually, the strand was so long that these structures could perform biological functions.
“The triplet or three-letter building blocks of RNA we used, called trinucleotides, do not occur in biology today, but they allow for much easier replication. The earliest forms of life are likely to have been quite different from any life that we know about,” James Attwater, lead author of the study from UCL, said in a press statement. “The changing conditions we engineered can occur naturally, for instance with night and day cycles of temperature, or in geothermal environments where hot rocks meet a cold atmosphere.”
UCL has long been involved in constructing the play-by-play of life’s origins on Earth. In 2017, for example, a study analyzed the chemistry that provided Earth with the very nucleotides necessary to construct the first RNA structures. This new study now attempts to understand, in a lab setting, how those ancient RNA first began replication, a process that’s essential to understanding the foundation of life.
“Life is separated from pure chemistry by information, a molecular memory encoded in the genetic material that is transmitted from one generation to the next,” Philipp Holliger, the senior author of the study from MRC Laboratory of Molecular Biology, said in a press statement. “For this process to occur, the information must be copied, i.e. replicated, to be passed on.”
Currently, the researchers have only been able to replicate roughly 17 percent of the RNA strand (roughly 30 out of 180 letters), but the team says there’s no reason they won’t achieve complete replication with improved enzyme efficiency. The researchers also note that this reaction can’t occur in saltwater (the salt disrupts the freezing process), but geothermal freshwater lakes or ponds would be the perfect chemical setting for RNA replication to take hold.
Although many questions remain, Earth’s ancient RNA World could have actually had the capacity for self-replication. It’s an intriguing step forward, but the scientific journey continues.

News
Scientists Are Pretty Close to Replicating the First Thing That Ever Lived
For 400 million years, a leading hypothesis claims, Earth was an “RNA World,” meaning that life must’ve first replicated from RNA before the arrival of proteins and DNA. Unfortunately, scientists have failed to find [...]
Why ‘Peniaphobia’ Is Exploding Among Young People (And Why We Should Be Concerned)
An insidious illness is taking hold among a growing proportion of young people. Little known to the general public, peniaphobia—the fear of becoming poor—is gaining ground among teens and young adults. Discover the causes [...]
Team finds flawed data in recent study relevant to coronavirus antiviral development
The COVID pandemic illustrated how urgently we need antiviral medications capable of treating coronavirus infections. To aid this effort, researchers quickly homed in on part of SARS-CoV-2's molecular structure known as the NiRAN domain—an [...]
Drug-Coated Neural Implants Reduce Immune Rejection
Summary: A new study shows that coating neural prosthetic implants with the anti-inflammatory drug dexamethasone helps reduce the body’s immune response and scar tissue formation. This strategy enhances the long-term performance and stability of electrodes [...]
Scientists discover cancer-fighting bacteria that ‘soak up’ forever chemicals in the body
A family of healthy bacteria may help 'soak up' toxic forever chemicals in the body, warding off their cancerous effects. Forever chemicals, also known as PFAS (per- and polyfluoroalkyl substances), are toxic chemicals that [...]
Johns Hopkins Researchers Uncover a New Way To Kill Cancer Cells
A new study reveals that blocking ribosomal RNA production rewires cancer cell behavior and could help treat genetically unstable tumors. Researchers at the Johns Hopkins Kimmel Cancer Center and the Department of Radiation Oncology and Molecular [...]
AI matches doctors in mapping lung tumors for radiation therapy
In radiation therapy, precision can save lives. Oncologists must carefully map the size and location of a tumor before delivering high-dose radiation to destroy cancer cells while sparing healthy tissue. But this process, called [...]
Scientists Finally “See” Key Protein That Controls Inflammation
Researchers used advanced microscopy to uncover important protein structures. For the first time, two important protein structures in the human body are being visualized, thanks in part to cutting-edge technology at the University of [...]
AI tool detects 9 types of dementia from a single brain scan
Mayo Clinic researchers have developed a new artificial intelligence (AI) tool that helps clinicians identify brain activity patterns linked to nine types of dementia, including Alzheimer's disease, using a single, widely available scan—a transformative [...]
Is plastic packaging putting more than just food on your plate?
New research reveals that common food packaging and utensils can shed microscopic plastics into our food, prompting urgent calls for stricter testing and updated regulations to protect public health. Beyond microplastics: The analysis intentionally [...]
Aging Spreads Through the Bloodstream
Summary: New research reveals that aging isn’t just a local cellular process—it can spread throughout the body via the bloodstream. A redox-sensitive protein called ReHMGB1, secreted by senescent cells, was found to trigger aging features [...]
AI and nanomedicine find rare biomarkers for prostrate cancer and atherosclerosis
Imagine a stadium packed with 75,000 fans, all wearing green and white jerseys—except one person in a solid green shirt. Finding that person would be tough. That's how hard it is for scientists to [...]
Are Pesticides Breeding the Next Pandemic? Experts Warn of Fungal Superbugs
Fungicides used in agriculture have been linked to an increase in resistance to antifungal drugs in both humans and animals. Fungal infections are on the rise, and two UC Davis infectious disease experts, Dr. George Thompson [...]
Scientists Crack the 500-Million-Year-Old Code That Controls Your Immune System
A collaborative team from Penn Medicine and Penn Engineering has uncovered the mathematical principles behind a 500-million-year-old protein network that determines whether foreign materials are recognized as friend or foe. How does your body [...]
Team discovers how tiny parts of cells stay organized, new insights for blocking cancer growth
A team of international researchers led by scientists at City of Hope provides the most thorough account yet of an elusive target for cancer treatment. Published in Science Advances, the study suggests a complex signaling [...]
Nanomaterials in Ophthalmology: A Review
Eye diseases are becoming more common. In 2020, over 250 million people had mild vision problems, and 295 million experienced moderate to severe ocular conditions. In response, researchers are turning to nanotechnology and nanomaterials—tools that are transforming [...]