Nanomedicines may offer clinicians a way to deliver precise, targeted therapy directly to tumors without damaging surrounding tissue. Yet, progress in the development of new drugs that treat cancer at the nanoparticle level has been frustratingly slow. Good results in animal models haven’t necessarily translated to clinical success in humans, in part because of low delivery efficiency of nanoparticles to tumors.
Now, with the support of a new $1.3 million grant from the National Institute of Biomedical Imaging and Bioengineering of the National Institutes of Health, researchers led by Zhoumeng Lin, B.Med., Ph.D., DABT, CPH, are building a tool that can offer drug researchers insight into how well a new nanoparticle-based cancer therapy will work, even before a drug enters animal testing.
This project will provide a tangible tool to improve the design of nanoparticles to accelerate clinical translation of cancer nanomedicines from animals to humans in order to benefit cancer patients.
Zhoumeng Lin, Associate Professor, Department of Environmental and Global Health, College of Public Health and Health Professions
Another anticipated benefit is the reduction or elimination of animal experimentation for new nanomedicines that are determined to have low delivery efficiency, Lin added.
Lin joined the university this summer from Kansas State University. He is the first faculty member in PHHP hired under UF’s artificial intelligence initiative, which seeks to make the university a national leader in AI. Lin’s expertise is in the development and application of computational technologies to address research questions related to nanomedicine, animal-derived food safety assessment, and environmental chemical risk assessment.
To build their predictive model of nanoparticle cancer therapies, researchers will use an AI technology known as artificial neural network and train it with hundreds of datasets from physiologically-based pharmacokinetic (PBPK) computer models. PBPK models describe the absorption, distribution, metabolism and excretion of a drug in the body using mathematical equations, and they can be used to predict the concentration of a drug following different therapies.
In this project, we will integrate PBPK modeling with AI approaches to build an AI-assisted smart model that can predict delivery efficiency of nanoparticles to tumors,” Lin said. “This approach is new in the fields of nanomedicine, pharmacology and toxicology.
Zhoumeng Lin, Associate Professor, Department of Environmental and Global Health, College of Public Health and Health Professions
Next, Lin’s co-investigator, Santosh Aryal, Ph.D., an associate professor in the department of pharmaceutical sciences and health outcomes at the University of Texas at Tyler, will conduct pharmacokinetic lab experiments using nanoparticles. The data from these experiments will be used to validate and/or optimize the new AI-PBPK model.
“We are excited about this collaboration and hope this will further open up novel avenues in cancer nanomedicine development,” Aryal said.
For the project’s final outcome, the team will convert the smart model into a publicly available web-based interface for use by nanomedicine researchers.
“This project addresses a crucial problem of low delivery efficiency of cancer nanomedicines, which has been a critical barrier to progress over the last 20 years,” Lin said. “This will greatly improve our fundamental understanding of the key factors of nanoparticle tumor delivery.”
News
Lipid nanoparticles discovered that can deliver mRNA directly into heart muscle cells
Cardiovascular disease continues to be the leading cause of death worldwide. But advances in heart-failure therapeutics have stalled, largely due to the difficulty of delivering treatments at the cellular level. Now, a UC Berkeley-led [...]
The basic mechanisms of visual attention emerged over 500 million years ago, study suggests
The brain does not need its sophisticated cortex to interpret the visual world. A new study published in PLOS Biology demonstrates that a much older structure, the superior colliculus, contains the necessary circuitry to perform the [...]
AI Is Overheating. This New Technology Could Be the Fix
Engineers have developed a passive evaporative cooling membrane that dramatically improves heat removal for electronics and data centers Engineers at the University of California San Diego have created an innovative cooling system designed to greatly enhance [...]
New nanomedicine wipes out leukemia in animal study
In a promising advance for cancer treatment, Northwestern University scientists have re-engineered the molecular structure of a common chemotherapy drug, making it dramatically more soluble and effective and less toxic. In the new study, [...]
Mystery Solved: Scientists Find Cause for Unexplained, Deadly Diseases
A study reveals that a protein called RPA is essential for maintaining chromosome stability by stimulating telomerase. New findings from the University of Wisconsin-Madison suggest that problems with a key protein that helps preserve chromosome stability [...]
Nanotech Blocks Infection and Speed Up Chronic Wound Recovery
A new nanotech-based formulation using quercetin and omega-3 fatty acids shows promise in halting bacterial biofilms and boosting skin cell repair. Scientists have developed a nanotechnology-based treatment to fight bacterial biofilms in wound infections. The [...]
Researchers propose five key questions for effective adoption of AI in clinical practice
While Artificial Intelligence (AI) can be a powerful tool that physicians can use to help diagnose their patients and has great potential to improve accuracy, efficiency and patient safety, it has its drawbacks. It [...]
Advancements and clinical translation of intelligent nanodrugs for breast cancer treatment
A comprehensive review in "Biofunct. Mater." meticulously details the most recent advancements and clinical translation of intelligent nanodrugs for breast cancer treatment. This paper presents an exhaustive overview of subtype-specific nanostrategies, the clinical benefits [...]
It’s Not “All in Your Head”: Scientists Develop Revolutionary Blood Test for Chronic Fatigue Syndrome
A 96% accurate blood test for ME/CFS could transform diagnosis and pave the way for future long COVID detection. Researchers from the University of East Anglia and Oxford Biodynamics have created a highly accurate [...]
How Far Can the Body Go? Scientists Find the Ultimate Limit of Human Endurance
Even the most elite endurance athletes can’t outrun biology. A new study finds that humans hit a metabolic ceiling at about 2.5 times their resting energy burn. When ultra-runners take on races that last [...]
World’s Rivers “Overdosing” on Human Antibiotics, Study Finds
Researchers estimate that approximately 8,500 tons of antibiotics enter river systems each year after passing through the human body and wastewater treatment processes. Rivers spanning millions of kilometers across the globe are contaminated with [...]
Yale Scientists Solve a Century-Old Brain Wave Mystery
Yale scientists traced gamma brain waves to thalamus-cortex interactions. The discovery could reveal how brain rhythms shape perception and disease. For more than a century, scientists have observed rhythmic waves of synchronized neuronal activity [...]
Can introducing peanuts early prevent allergies? Real-world data confirms it helps
New evidence from a large U.S. primary care network shows that early peanut introduction, endorsed in 2015 and 2017 guidelines, was followed by a marked decline in clinician-diagnosed peanut and overall food allergies among [...]
Nanoparticle blueprints reveal path to smarter medicines
Lipid nanoparticles (LNPs) are the delivery vehicles of modern medicine, carrying cancer drugs, gene therapies and vaccines into cells. Until recently, many scientists assumed that all LNPs followed more or less the same blueprint, [...]
How nanomedicine and AI are teaming up to tackle neurodegenerative diseases
When I first realized the scale of the challenge posed by neurodegenerative diseases, such as Alzheimer's, Parkinson's disease and amyotrophic lateral sclerosis (ALS), I felt simultaneously humbled and motivated. These disorders are not caused [...]
Self-Organizing Light Could Transform Computing and Communications
USC engineers have demonstrated a new kind of optical device that lets light organize its own route using the principles of thermodynamics. Instead of relying on switches or digital control, the light finds its own [...]















