Oregon State University scientists have invented a way to make magnetic nanoparticles that get hotter than any previous nanoparticle, improving their cancer fighting ability.
Findings of the preclinical study led by Oleh Taratula and Olena Taratula were published today in the journal Small Methods.
Magnetic nanoparticles have shown anti-cancer potential for years, the scientists said. Once inside a tumor, the particles—tiny pieces of matter as small as one-billionth of a meter—are exposed to an alternating magnetic field. Exposure to the field, a non-invasive process, causes the nanoparticles to heat up, weakening or destroying the cancer cells.
“Magnetic hyperthermia shows great promise for the treatment of many types of cancer,” Olena Taratula said. “Many preclinical and clinical studies have demonstrated its potential to either kill cancer cells directly or enhance their susceptibility to radiation and chemotherapy.”
But at present, magnetic hypothermia can only be used for patients whose tumors are accessible by a hypodermic needle, Oleh Taratula said, and not for people with hard to reach malignancies such as metastatic ovarian cancer.
“With currently available magnetic nanoparticles, the required therapeutic temperatures—above 44 degrees Celsius—can only be achieved by direct injection into the tumor,” he said. “The nanoparticles have only moderate heating efficiency, which means you need a high concentration of them in the tumor to generate enough heat. And numerous studies have shown that only a small percentage of systemically injected nanoparticles accumulate in tumors, making it a challenge to get that high concentration.”
To tackle those problems, the scientists developed a new chemical manufacturing technique that resulted in magnetic nanoparticles with more heating efficiency. They demonstrated in a mouse model that the cobalt-doped nanoparticles will accumulate in metastatic ovarian cancer tumors following low-dose systemic administration, and that when exposed to an alternating magnetic field, the particles can rise in temperature to 50 degrees Celsius.
“To our knowledge, this is the first time it’s been shown that magnetic nanoparticles injected intravenously at a clinically recommended dose are capable of increasing the temperature of cancer tissue above 44 degrees Celsius,” Olena Taratula said. “And we also demonstrated that our novel method could be used for the synthesis of various core-shell nanoparticles. It could serve as a foundation for the development of novel nanoparticles with high heating performance, further advancing systemic magnetic hyperthermia for treating cancer.”
Core-shell nanoparticles have an inner core structure and an outer shell made from different components, she said. Researchers are especially interested in them because of the unique properties that can result from the combination of core and shell material, geometry and design.
In addition to Olena and Oleh Taratula, the collaboration also included College of Pharmacy researchers Youngrong Park, Abraham Moses, Peter Do, Ananiya Demessie, Tetiana Korzun, Fahad Sabei, Conroy Sun, Prem Singh, Fahad Sabei and Hassan Albarqi, as well as Pallavi Dhagat from the Oregon State College of Engineering and researchers from Oregon Health & Science University.

News
A Promising New Pathway in the Battle Against Aggressive Prostate Cancer
Neuronal Molecule Makes Prostate Cancer More Aggressive Researchers discover a potential therapeutic avenue against an aggressive form of prostate cancer. Prostate cancer is the second most common cancer and the second leading cause of [...]
Nasal Vaccines: Stopping the COVID-19 Virus Before It Reaches the Lungs
The Pfizer-BioNTech and Moderna mRNA vaccines have played a large role in preventing deaths and severe infections from COVID-19. But researchers are still in the process of developing alternative approaches to vaccines to improve [...]
NASA Tracking a Huge, Growing Anomaly in Earth’s Magnetic Field – with video
NASA is actively monitoring a strange anomaly in Earth's magnetic field: a giant region of lower magnetic intensity in the skies above the planet, stretching out between South America and southwest Africa. This vast, developing [...]
New, Better Models Show How Infectious Diseases Like COVID-19 Spread
Infectious diseases such as COVID-19 can spread rapidly across the globe. Models that can predict how such diseases spread will strengthen national surveillance systems and improve public health decision-making. The COVID-19 pandemic has emphasized the [...]
Human Antibodies Discovered That Can Block Multiple Coronaviruses Including COVID-19
Results from a Scripps Research and UNC team pave the way for a vaccine and therapeutic antibodies that could be stockpiled to fight future coronavirus pandemics. A team of scientists from Scripps Research and [...]
Nanotechnology could be used to treat lymphedema
The human body is made up of thousands of tiny lymphatic vessels that ferry white blood cells and proteins around the body, like a superhighway of the immune system. It's remarkably efficient, but if [...]
DNA Nanotechnology Tools – From Design to Applications
Suite of DNA nanotechnology devices engineered to overcome specific bottlenecks in the development of new therapies, diagnostics, and understanding of molecular structures. DNA nanostructures with their potential for cell and tissue permeability, biocompatibility, and [...]
Regenerating bone with deer antler stem cells
Scientists from a collection of Chinese research institutions collaborated on a study of organ regeneration in mammals, finding deer antler blastema progenitor cells are a possible source of conserved regeneration cells in higher vertebrates. [...]
AI Takes On Cancer: Analysis of Mutations Could Lead to Improved Therapy
Cancer is a complex and diverse disease, and its range of associated mutations is vast. The combination of these genomic changes in an individual is referred to as their “mutational landscape.” These landscapes vary [...]
Exposing tumours to bacteria converts immune cells to cancer killers
New research on inflammation could lead to better treatments to improve outcomes for people with advanced or previously untreatable cancers. Introducing bacteria to a tumour’s microenvironment creates a state of acute inflammation that triggers [...]
Smart nanotechnology for more accurate delivery of insulin
More efficient and longer lasting glucose-responsive insulin that eliminates the need for people with type 1 diabetes to measure their glucose levels could be a step closer thanks to a Monash University-led project. Published [...]
Efficiently Harvesting Rare Earth Elements From Wastewater Using Exotic Bacteria
The novel strains of cyanobacteria exhibit a fast and efficient “biosorption” of rare earth elements, making recycling possible. Rare earth elements (REEs) are a set of 17 metallic elements that possess similar chemical properties. [...]
Resisting Treatment: Cancer Cells Shrink or Super-Size To Survive
A new approach to image analysis has uncovered how cancer cells manipulate their size as a means of resisting treatment. Researchers have discovered that cancer cells are capable of either shrinking or super-size themselves [...]
New Research Explains Why Children Avoid Severe COVID-19 Symptoms
According to new research, children exhibit a robust initial immune response to the coronavirus, however, they are unable to transfer this response to long-lasting memory T cells like adults do. Researchers led by scientists [...]
Scientists Unravel Protein Map of Mitochondria
A new study sheds light on the organization of proteins within mitochondria. Mitochondria, the “powerhouses” of cells, play a crucial role in the energy production of organisms and are involved in various metabolic and [...]
Mystifying Trapping Phenomenon: A Surprising Way To Catch a Microparticle
New insights could advance microfluidics and drug delivery systems. New study finds obstacles can trap rolling microparticles in fluid Through simulations and experiments, physicists attribute the trapping effect to stagnant pockets of fluid, created [...]