Lipids are difficult to detect with light microscopy. Using a new chemical labeling strategy, a Dresden-based team led by André Nadler at the Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG) and Alf Honigmann at the Biotechnology Center (BIOTEC) of TU Dresden has overcome this limitation, enabling new insights into lipids.
The researchers were able to answer a long-standing question: how do cells transport specific lipids to the membranes of their target organelles? The new lipid-imaging technique will help understand the role of lipid transport in health and disease. The findings were published in the journal Nature.
Lipid molecules, or fats, are crucial to all forms of life. Cells need lipids to build membranes, separate and organize biochemical reactions, store energy, and transmit information.
Every cell can create thousands of different lipids, and when they are out of balance, metabolic and neurodegenerative diseases can arise. It is still not well understood how cells sort different types of lipids between cell organelles to maintain the composition of each membrane.
A major reason is that lipids are difficult to study, since microscopy techniques to precisely trace their location inside cells have so far been missing.
In a long-standing collaboration, Nadler, a chemical biologist at the Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG) in Dresden, Germany, teamed up with Honigmann, a bioimaging specialist at Biotechnology Center (BIOTEC) at the TU-Dresden University of Technology, to develop a method that enables visualizing lipids in cells using standard fluorescence microscopy.
After the first successful proof of concept, the duo brought mass-spectrometry expert Andrej Shevchenko (MPI-CBG), Björn Drobot at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR), and the group of Martin Hof from the J. Heyrovsky Institute of Physical Chemistry in Prague on board to study how lipids are transported between cellular organelles.
Artificial lipids under the sunbed
“We started our project with synthesizing a set of minimally modified lipids that represent the main lipids present in organelle membranes. These modified lipids are essentially the same as their native counterparts, with just a few different atoms that allowed us to track them under the microscope,” explains Kristin Böhlig, a Ph.D. student in the Nadler group and chemist who was in charge of creating the modified lipids.
The modified lipids mimic natural lipids and are “bifunctional,” which means they can be activated by UV light, causing the lipid to bind or crosslink with nearby proteins. The modified lipids were loaded in the membrane of living cells and, over time, transported into the membranes of organelles. The researchers worked with human cells in cell culture, such as bone or intestinal cells, as they are ideal for imaging.
“After the treatment with UV light, we were able to monitor the lipids with fluorescence microscopy and capture their location over time. This gave us a comprehensive picture of lipid exchange between cell membrane and organelle membranes,” concludes Kristin.
In order to understand the microscopy data, the team needed a custom image analysis pipeline. “To address our specific needs, I developed an image analysis pipeline with automated image segmentation assisted by artificial intelligence to quantify the lipid flow through the cellular organelle system,” says Juan Iglesias-Artola, who did the image analysis.
Speedy lipid transport by proteins
By combining the image analysis with mathematical modeling done by Drobot at the HZDR, the research team discovered that between 85% and 95% of the lipid transport between the membranes of cell organelles is organized by carrier proteins that move the lipids, rather than by vesicles.
This non-vesicular transport is much more specific with regard to individual lipid species and their sorting to the different organelles in the cell. The researchers also found that the lipid transport by proteins is ten times faster than by vesicles. These results imply that the lipid compositions of organelle membranes are primarily maintained through fast, species-specific, non-vesicular lipid transport.
In a parallel set of experiments, the group of Shevchenko at the MPI-CBG used ultra-high-resolution mass spectrometry to see how the different lipids change their structure during the transport from the cell membrane to the organelle membrane.
A boost for lipids in cell biology and disease
This new approach provides the first-ever quantitative map of how lipids move through the cell to different organelles. The results suggest that non-vesicular lipid transport has a key role in the maintenance of each organelle membrane composition.
Honigmann, research group leader at the BIOTEC, says, “Our lipid-imaging technique enables the mechanistic analysis of lipid transport and function directly in cells, which has been impossible before. We think that our work opens the door to a new era of studying the role of lipids within the cell.”
Imaging of lipids will allow further discoveries and help to reveal the underlying mechanisms in diseases caused by lipid imbalances. The new technique could potentially help to develop new druggable targets and therapeutic approaches for lipid-associated diseases, such as nonalcoholic fatty liver disease.
‘We knew that we were onto something big’
Nadler, research group leader at MPI-CBG, looks back at the start of the study: “Imaging lipids in cells has always been one of the most challenging aspects of microscopy. Our project was no different. Alf Honigmann and I started discussing about solving the lipid imaging problem as soon as we got hired in close succession at MPI-CBG in 2014/15 and we quickly decided to go for it.
“It still took us almost five years from the start of the project to the point in autumn 2019 when the two of us finally produced a sample with a beautiful plasma membrane stain. That’s when we knew that we were onto something big. As a reward, certain well-known global events meant we were required to shut down our laboratories a few months later.
“In the end, the delay was for the best. Before the revolution in the use of artificial intelligence in image segmentation, we would not have been able to properly quantify the imaging data, so our conclusions would have been much more limited.”
Researchers still need to determine which lipid-transfer proteins drive the selective transport of different lipid species. They also need to identify the energy sources that power lipid transport and ensure that each organelle keeps its own unique membrane composition.
More information: Juan M. Iglesias-Artola et al, Quantitative imaging of lipid transport in mammalian cells, Nature (2025). DOI: 10.1038/s41586-025-09432-x
Journal information: Nature
News
A single shot of HPV vaccine may be enough to fight cervical cancer, study finds
WASHINGTON -- A single HPV vaccination appears just as effective as two doses at preventing the viral infection that causes cervical cancer, researchers reported Wednesday. HPV, or human papillomavirus, is very common and spread [...]
New technique overcomes technological barrier in 3D brain imaging
Scientists at the Swiss Light Source SLS have succeeded in mapping a piece of brain tissue in 3D at unprecedented resolution using X-rays, non-destructively. The breakthrough overcomes a long-standing technological barrier that had limited [...]
Scientists Uncover Hidden Blood Pattern in Long COVID
Researchers found persistent microclot and NET structures in Long COVID blood that may explain long-lasting symptoms. Researchers examining Long COVID have identified a structural connection between circulating microclots and neutrophil extracellular traps (NETs). The [...]
This Cellular Trick Helps Cancer Spread, but Could Also Stop It
Groups of normal cbiells can sense far into their surroundings, helping explain cancer cell migration. Understanding this ability could lead to new ways to limit tumor spread. The tale of the princess and the [...]
New mRNA therapy targets drug-resistant pneumonia
Bacteria that multiply on surfaces are a major headache in health care when they gain a foothold on, for example, implants or in catheters. Researchers at Chalmers University of Technology in Sweden have found [...]
Current Heart Health Guidelines Are Failing To Catch a Deadly Genetic Killer
New research reveals that standard screening misses most people with a common inherited cholesterol disorder. A Mayo Clinic study reports that current genetic screening guidelines overlook most people who have familial hypercholesterolemia, an inherited disorder that [...]
Scientists Identify the Evolutionary “Purpose” of Consciousness
Summary: Researchers at Ruhr University Bochum explore why consciousness evolved and why different species developed it in distinct ways. By comparing humans with birds, they show that complex awareness may arise through different neural architectures yet [...]
Novel mRNA therapy curbs antibiotic-resistant infections in preclinical lung models
Researchers at the Icahn School of Medicine at Mount Sinai and collaborators have reported early success with a novel mRNA-based therapy designed to combat antibiotic-resistant bacteria. The findings, published in Nature Biotechnology, show that in [...]
New skin-permeable polymer delivers insulin without needles
A breakthrough zwitterionic polymer slips through the skin’s toughest barriers, carrying insulin deep into tissue and normalizing blood sugar, offering patients a painless alternative to daily injections. A recent study published in the journal Nature examines [...]
Multifunctional Nanogels: A Breakthrough in Antibacterial Strategies
Antibiotic resistance is a growing concern - from human health to crop survival. A new study successfully uses nanogels to target and almost entirely inhibit the bacteria P. Aeruginosa. Recently published in Angewandte Chemie, the study [...]
Nanoflowers rejuvenate old and damaged human cells by replacing their mitochondria
Biomedical researchers at Texas A&M University may have discovered a way to stop or even reverse the decline of cellular energy production—a finding that could have revolutionary effects across medicine. Dr. Akhilesh K. Gaharwar [...]
The Stunning New Push to Protect the Invisible 99% of Life
Scientists worldwide have joined forces to build the first-ever roadmap for conserving Earth’s vast invisible majority—microbes. Their new IUCN Specialist Group reframes conservation by elevating microbial life to the same urgency as plants and [...]
Scientists Find a Way to Help the Brain Clear Alzheimer’s Plaques Naturally
Scientists have discovered that the brain may have a built-in way to fight Alzheimer’s. By activating a protein called Sox9, researchers were able to switch on star-shaped brain cells known as astrocytes and turn them into [...]
Vision can be rebooted in adults with amblyopia, study suggests
Temporarily anesthetizing the retina briefly reverts the activity of the visual system to that observed in early development and enables growth of responses to the amblyopic eye, new research shows. In the common vision [...]
Ultrasound-activated Nanoparticles Kill Liver Cancer and Activate Immune System
A new ultrasound-guided nanotherapy wipes out liver tumors while training the immune system to keep them from coming back. The study, published in Nano Today, introduces a biodegradable nanoparticle system that combines sonodynamic therapy and cell [...]
Magnetic nanoparticles that successfully navigate complex blood vessels may be ready for clinical trials
Every year, 12 million people worldwide suffer a stroke; many die or are permanently impaired. Currently, drugs are administered to dissolve the thrombus that blocks the blood vessel. These drugs spread throughout the entire [...]















