Tiny quantum computing processors built from silicon have finally surpassed 99 percent fidelity in certain logic operations (“gates”). Quantum computers store information in the quantum state of a physical system (in this case, two silicon qubits) then manipulate the quantum state to perform a calculation in a manner that isn’t possible on a classical computer. | |
Fidelity is a measure of how close the final quantum state of the real-life qubits is to the ideal case. If the fidelity of logic gates is too low, calculations will fail because errors will accumulate faster than they can be corrected. The threshold for fault-tolerant quantum computing is over 99 percent. | |
Three research groups demonstrated more than 99 percent fidelity for “if-then” logic gates between two silicon qubits (Nature, “Precision tomography of a three-qubit donor quantum processor in silicon”). This required precisely measuring failure rates, identifying the nature and cause of the errors, and fine-tuning the devices. |
The researchers used a technique called gate set tomography to achieve this in two of the three experiments. The technique combined the results of many separate experiments to create a detailed snapshot of the errors in each logic gate. | |
The researchers were able to make a precise determination of the error generated by different sources and fine-tune the gates to achieve error rates below 1 percent. | |
Quantum computing may be able to solve certain problems, such as predicting the behavior of new molecules, far faster than today’s computers. To do so, researchers must build qubits, engineer precise couplings between them, and scale up systems to thousands or millions of qubits. | |
Researchers expect qubits made of silicon to scale up better than the qubits used in today’s testbed quantum computers, which rely on either trapped ions or superconducting circuits. | |
Achieving high-fidelity logic gates opens the door to silicon-based testbed quantum computers. It also demonstrates the power of detailed error characterization to help users pinpoint error modes then work around or eliminate them. | |
Qubits – protected, controllable 2-state quantum systems – lie at the heart of quantum computing. Quantum computing processors are built by assembling an array of at least two (and hopefully someday thousands or millions) of qubits, with an integrated control system that can perform logic gates on each qubit and between pairs of qubits. Their performance and capability are limited by errors in the logic gates. | |
High-fidelity gates have low error rates. Once the error rate is less than a certain threshold – which scientists believe to be about 1 percent – quantum error correction can, in principle, reduce it even further. Beating this threshold in laboratory experiments is a major milestone for any qubit technology. | |
What kinds of errors are occurring is also a big deal for quantum error correction. Some errors are easier to eliminate or correct; others may be fatal. Quantum computing researchers from the Department of Energy (DOE)-funded Quantum Performance Laboratory worked with Australian experimental physicists to design a new kind of gate set tomography customized to a 3-qubit silicon qubit processor. They used it to measure the rates of 240 distinct types of possible errors on each of six logic gates. Of those possible errors, 95 percent did not occur in the experiments, and the remaining errors added up to less than 1 percent infidelity. | |
Research groups in Japan and the Netherlands reported similar results simultaneously, with the Dutch group also using the DOE-funded pyGSTi gate set tomography software to confirm their demonstration. |

News
Chernobyl scientists discover black fungus feeding on deadly radiation
It looks pretty sinister, but it might actually be incredibly helpful When reactor number four in Chernobyl exploded, it triggered the worst nuclear disaster in history, one which the surrounding area still has not [...]
Long COVID Is Taking A Silent Toll On Mental Health, Here’s What Experts Say
Months after recovering from COVID-19, many people continue to feel unwell. They speak of exhaustion that doesn’t fade, difficulty breathing, or an unsettling mental haze. What’s becoming increasingly clear is that recovery from the [...]
Study Delivers Cancer Drugs Directly to the Tumor Nucleus
A new peptide-based nanotube treatment sneaks chemo into drug-resistant cancer cells, providing a unique workaround to one of oncology’s toughest hurdles. CiQUS researchers have developed a novel molecular strategy that allows a chemotherapy drug to [...]
Scientists Begin $14.2 Million Project To Decode the Body’s “Hidden Sixth Sense”
An NIH-supported initiative seeks to unravel how the nervous system tracks and regulates the body’s internal organs. How does your brain recognize when it’s time to take a breath, when your blood pressure has [...]
Scientists Discover a New Form of Ice That Shouldn’t Exist
Researchers at the European XFEL and DESY are investigating unusual forms of ice that can exist at room temperature when subjected to extreme pressure. Ice comes in many forms, even when made of nothing but water [...]
Nobel-winning, tiny ‘sponge crystals’ with an astonishing amount of inner space
The 2025 Nobel Prize in chemistry was awarded to Richard Robson, Susumu Kitagawa and Omar Yaghi on Oct. 8, 2025, for the development of metal-organic frameworks, or MOFs, which are tunable crystal structures with extremely [...]
Harnessing Green-Synthesized Nanoparticles for Water Purification
A new review reveals how plant- and microbe-derived nanoparticles can power next-gen water disinfection, delivering cleaner, safer water without the environmental cost of traditional treatments. A recent review published in Nanomaterials highlights the potential of green-synthesized nanomaterials (GSNMs) in [...]
Brainstem damage found to be behind long-lasting effects of severe Covid-19
Damage to the brainstem - the brain's 'control center' - is behind long-lasting physical and psychiatric effects of severe Covid-19 infection, a study suggests. Using ultra-high-resolution scanners that can see the living brain in [...]
CT scan changes over one year predict outcomes in fibrotic lung disease
Researchers at National Jewish Health have shown that subtle increases in lung scarring, detected by an artificial intelligence-based tool on CT scans taken one year apart, are associated with disease progression and survival in [...]
AI Spots Hidden Signs of Disease Before Symptoms Appear
Researchers suggest that examining the inner workings of cells more closely could help physicians detect diseases earlier and more accurately match patients with effective therapies. Researchers at McGill University have created an artificial intelligence tool capable of uncovering [...]
Breakthrough Blood Test Detects Head and Neck Cancer up to 10 Years Before Symptoms
Mass General Brigham’s HPV-DeepSeek test enables much earlier cancer detection through a blood sample, creating a new opportunity for screening HPV-related head and neck cancers. Human papillomavirus (HPV) is responsible for about 70% of [...]
Study of 86 chikungunya outbreaks reveals unpredictability in size and severity
The symptoms come on quickly—acute fever, followed by debilitating joint pain that can last for months. Though rarely fatal, the chikungunya virus, a mosquito-borne illness, can be particularly severe for high-risk individuals, including newborns and older [...]
Tiny Fat Messengers May Link Obesity to Alzheimer’s Plaque Buildup
Summary: A groundbreaking study reveals how obesity may drive Alzheimer’s disease through tiny messengers called extracellular vesicles released from fat tissue. These vesicles carry lipids that alter how quickly amyloid-β plaques form, a hallmark of [...]
Ozone exposure weakens lung function and reshapes the oral microbiome
Scientists reveal that short-term ozone inhalation doesn’t just harm the lungs; it reshapes the microbes in your mouth, with men facing the greatest risks. Ozone is a toxic environmental pollutant with wide-ranging effects on [...]
New study reveals molecular basis of Long COVID brain fog
Even though many years have passed since the start of the COVID-19 pandemic, the effects of infection with SARS-CoV-2 are not completely understood. This is especially true for Long COVID, a chronic condition that [...]
Scientists make huge Parkinson’s breakthrough as they discover ‘protein trigger’
Scientists have, for the first time, directly visualised the protein clusters in the brain believed to trigger Parkinson's disease, bringing them one step closer to potential treatments. Parkinson's is a progressive incurable neurological disorder [...]