Tiny "dots" that transform light have the potential to drive big advancements.
A new material, crafted in the seldom-explored convergence of organic and inorganic chemistry, holds promise to not just enhance the efficiency of solar panels, but also could also usher in the next generation of cancer treatments.
Described in a paper published recently published in Nature Chemistry, this composite material is composed of minuscule silicon nanoparticles and an organic compound bearing close similarities to those utilized in OLED TVs. Its properties include the ability to quicken the energy exchange between two molecules, as well as to transform light of lower energy into light of higher energy.
Only a handful of laboratories in the world are capable of making the silicon nanoparticles with the right specifications. One of those laboratories is led by Lorenzo Mangolini, a mechanical engineering and materials science professor at UC Riverside who helped invent the process for producing them.
High-energy light, such as ultraviolet laser light, can form free radicals able to attack cancer tissue. UV light, however, doesn't travel far enough into tissues to generate therapeutic radicals close to the tumor site. On the other hand, near-infrared light penetrates deeply into the body but doesn't have enough energy to generate the radicals.
With the new material, the research team has demonstrated it is possible to achieve the emission of light with higher energy than the one aimed at the material, known as photon up-conversion. In addition to being efficient, the silicon "dots" that form the base of this high-energy material are not toxic.
Taking low-energy light and transforming it into a higher-energy form could be used to boost the efficiency of solar cells by allowing them to capture near-infrared light that would normally pass through them. When optimized, the low-energy light could reduce the size of solar panels by 30%.
"These cells usually don't use low-energy photons, but using this system, you could. We could make the arrays much more efficient," Mangolini said.
There are a variety of applications involving infrared light that could be improved with the new silicon dot-based material. They include bioimaging, light-based 3D printing, and light sensors that would help self-driving cars through foggy weather.
This research was funded by the National Science Foundation and was performed by a team based at the University of Texas, Austin, the University of Colorado, Boulder, and the University of Utah, as well as UCR. Not only is the research team excited about the potential applications, but about being able to design a new class of composite materials like this one.
Composites are materials that behave differently than their base components do when acting alone. As an example, composites of carbon fibers and resins are strong and lightweight and are used in airplane wings and many sporting goods.
"We now know how to take two extremely different substances and bond them strongly enough to create not just a mixture, but an entirely new material with distinct properties," said Sean Roberts, University of Texas at Austin chemistry professor and corresponding paper author. "This is one of the first times this has been achieved."
Reference: "Efficient photon upconversion enabled by strong coupling between silicon quantum dots and anthracene" by Kefu Wang, R. Peyton Cline, Joseph Schwan, Jacob M. Strain, Sean T. Roberts, Lorenzo Mangolini, Joel D. Eaves and Ming Lee Tang, 12 June 2023, Nature Chemistry.
DOI: 10.1038/s41557-023-01225-x
News
Smaller Than a Grain of Salt: Engineers Create the World’s Tiniest Wireless Brain Implant
A salt-grain-sized neural implant can record and transmit brain activity wirelessly for extended periods. Researchers at Cornell University, working with collaborators, have created an extremely small neural implant that can sit on a grain of [...]
Scientists Develop a New Way To See Inside the Human Body Using 3D Color Imaging
A newly developed imaging method blends ultrasound and photoacoustics to capture both tissue structure and blood-vessel function in 3D. By blending two powerful imaging methods, researchers from Caltech and USC have developed a new way to [...]
Brain waves could help paralyzed patients move again
People with spinal cord injuries often lose the ability to move their arms or legs. In many cases, the nerves in the limbs remain healthy, and the brain continues to function normally. The loss of [...]
Scientists Discover a New “Cleanup Hub” Inside the Human Brain
A newly identified lymphatic drainage pathway along the middle meningeal artery reveals how the human brain clears waste. How does the brain clear away waste? This task is handled by the brain’s lymphatic drainage [...]
New Drug Slashes Dangerous Blood Fats by Nearly 40% in First Human Trial
Scientists have found a way to fine-tune a central fat-control pathway in the liver, reducing harmful blood triglycerides while preserving beneficial cholesterol functions. When we eat, the body turns surplus calories into molecules called [...]
A Simple Brain Scan May Help Restore Movement After Paralysis
A brain cap and smart algorithms may one day help paralyzed patients turn thought into movement—no surgery required. People with spinal cord injuries often experience partial or complete loss of movement in their arms [...]
Plant Discovery Could Transform How Medicines Are Made
Scientists have uncovered an unexpected way plants make powerful chemicals, revealing hidden biological connections that could transform how medicines are discovered and produced. Plants produce protective chemicals called alkaloids as part of their natural [...]
Scientists Develop IV Therapy That Repairs the Brain After Stroke
New nanomaterial passes the blood-brain barrier to reduce damaging inflammation after the most common form of stroke. When someone experiences a stroke, doctors must quickly restore blood flow to the brain to prevent death. [...]
Analyzing Darwin’s specimens without opening 200-year-old jars
Scientists have successfully analyzed Charles Darwin's original specimens from his HMS Beagle voyage (1831 to 1836) to the Galapagos Islands. Remarkably, the specimens have been analyzed without opening their 200-year-old preservation jars. Examining 46 [...]
Scientists discover natural ‘brake’ that could stop harmful inflammation
Researchers at University College London (UCL) have uncovered a key mechanism that helps the body switch off inflammation—a breakthrough that could lead to new treatments for chronic diseases affecting millions worldwide. Inflammation is the [...]
A Forgotten Molecule Could Revive Failing Antifungal Drugs and Save Millions of Lives
Scientists have uncovered a way to make existing antifungal drugs work again against deadly, drug-resistant fungi. Fungal infections claim millions of lives worldwide each year, and current medical treatments are failing to keep pace. [...]
Scientists Trap Thyme’s Healing Power in Tiny Capsules
A new micro-encapsulation breakthrough could turn thyme’s powerful health benefits into safer, smarter nanodoses. Thyme extract is often praised for its wide range of health benefits, giving it a reputation as a natural medicinal [...]
Scientists Develop Spray-On Powder That Instantly Seals Life-Threatening Wounds
KAIST scientists have created a fast-acting, stable powder hemostat that stops bleeding in one second and could significantly improve survival in combat and emergency medicine. Severe blood loss remains the primary cause of death from [...]
Oceans Are Struggling To Absorb Carbon As Microplastics Flood Their Waters
New research points to an unexpected way plastic pollution may be influencing Earth’s climate system. A recent study suggests that microscopic plastic pollution is reducing the ocean’s capacity to take in carbon dioxide, a [...]
Molecular Manufacturing: The Future of Nanomedicine – New book from Frank Boehm
This book explores the revolutionary potential of atomically precise manufacturing technologies to transform global healthcare, as well as practically every other sector across society. This forward-thinking volume examines how envisaged Factory@Home systems might enable the cost-effective [...]
New Book! NanoMedical Brain/Cloud Interface – Explorations and Implications
New book from Frank Boehm, NanoappsMedical Inc Founder: This book explores the future hypothetical possibility that the cerebral cortex of the human brain might be seamlessly, safely, and securely connected with the Cloud via [...]















