Freeze-dried genetic circuits could reveal the presence of SARS-CoV-2, Ebola, MRSA, and more.
Masks and testing have been key to the COVID-19 pandemic response—and now devices that combine the two may be on the way. Harvard University and Massachusetts Institute of Technology researchers used synthetic biology to create a face mask that accurately detects the COVID-causing virus.
Synthetic biologists use biological parts to build various devices, including sensors that detect genetic sequences. Previous efforts have used engineered bacteria in these sensors, but living cells bring challenges (like keeping them fed) and biohazard risks. The new research makes wearable devices with freeze-dried “cell-free” circuits built from genes, enzymes and other cell components, which can be placed on porous, flexible materials and easily stored. (The researchers described adding such circuits to paper in 2014.) “This work’s important advance is converting bench-top technology to wearable devices,” says bioengineer Xinyue Liu, who develops living sensors at M.I.T. and was not part of the new study. Such tools could allow for simplified on-site testing.
The study, published in Nature Biotechnology, describes adding cell-free sensors to elastics, textile threads and paper to detect the virus that causes COVID-19 (SARS-CoV-2), Ebola virus, MRSA, a chemical nerve agent and more. Some of these sensors, including those used in the new face mask that flags SARS-CoV-2, rely on CRISPR technology: When “guide” RNAs match target DNA, they activate an enzyme that cuts the nucleic acids (the DNA “letters”). This particular enzyme also cuts other nearby nucleic acids, freeing a fluorescent protein that emits light. The technique makes for versatile, “programmable” sensors that could be quickly adapted to detect virus variants.
The prototype mask activates with a push-button that rehydrates the sensor, starting reactions that break the virus apart and amplify its DNA for detection. The full process produces a color change within 90 minutes of activation—say, when worn by a hospital patient. “Breath is a nice source of noninvasive sampling that has the right concentrations,” says University of Freiburg sensor expert Can Dincer, who was not involved in the new study. “The application really fits the needs of our current situation.”
Sensitivity was similar to most lab tests’. “The ‘gold standard’ would still be your lab-based PCR tests, but we’re in the ballpark,” says bioengineer and senior author James Collins. The single-use masks need no power source nor operator expertise and work at typical room temperature and humidity.
Collins hopes to commercialize the mask to sell for around $5. Similar genetic-circuit wearables, he adds, could aid health-care workers, military personnel, first responders, and others in the field.
News
New mRNA therapy targets drug-resistant pneumonia
Bacteria that multiply on surfaces are a major headache in health care when they gain a foothold on, for example, implants or in catheters. Researchers at Chalmers University of Technology in Sweden have found [...]
Current Heart Health Guidelines Are Failing To Catch a Deadly Genetic Killer
New research reveals that standard screening misses most people with a common inherited cholesterol disorder. A Mayo Clinic study reports that current genetic screening guidelines overlook most people who have familial hypercholesterolemia, an inherited disorder that [...]
Scientists Identify the Evolutionary “Purpose” of Consciousness
Summary: Researchers at Ruhr University Bochum explore why consciousness evolved and why different species developed it in distinct ways. By comparing humans with birds, they show that complex awareness may arise through different neural architectures yet [...]
Novel mRNA therapy curbs antibiotic-resistant infections in preclinical lung models
Researchers at the Icahn School of Medicine at Mount Sinai and collaborators have reported early success with a novel mRNA-based therapy designed to combat antibiotic-resistant bacteria. The findings, published in Nature Biotechnology, show that in [...]
New skin-permeable polymer delivers insulin without needles
A breakthrough zwitterionic polymer slips through the skin’s toughest barriers, carrying insulin deep into tissue and normalizing blood sugar, offering patients a painless alternative to daily injections. A recent study published in the journal Nature examines [...]
Multifunctional Nanogels: A Breakthrough in Antibacterial Strategies
Antibiotic resistance is a growing concern - from human health to crop survival. A new study successfully uses nanogels to target and almost entirely inhibit the bacteria P. Aeruginosa. Recently published in Angewandte Chemie, the study [...]
Nanoflowers rejuvenate old and damaged human cells by replacing their mitochondria
Biomedical researchers at Texas A&M University may have discovered a way to stop or even reverse the decline of cellular energy production—a finding that could have revolutionary effects across medicine. Dr. Akhilesh K. Gaharwar [...]
The Stunning New Push to Protect the Invisible 99% of Life
Scientists worldwide have joined forces to build the first-ever roadmap for conserving Earth’s vast invisible majority—microbes. Their new IUCN Specialist Group reframes conservation by elevating microbial life to the same urgency as plants and [...]
Scientists Find a Way to Help the Brain Clear Alzheimer’s Plaques Naturally
Scientists have discovered that the brain may have a built-in way to fight Alzheimer’s. By activating a protein called Sox9, researchers were able to switch on star-shaped brain cells known as astrocytes and turn them into [...]
Vision can be rebooted in adults with amblyopia, study suggests
Temporarily anesthetizing the retina briefly reverts the activity of the visual system to that observed in early development and enables growth of responses to the amblyopic eye, new research shows. In the common vision [...]
Ultrasound-activated Nanoparticles Kill Liver Cancer and Activate Immune System
A new ultrasound-guided nanotherapy wipes out liver tumors while training the immune system to keep them from coming back. The study, published in Nano Today, introduces a biodegradable nanoparticle system that combines sonodynamic therapy and cell [...]
Magnetic nanoparticles that successfully navigate complex blood vessels may be ready for clinical trials
Every year, 12 million people worldwide suffer a stroke; many die or are permanently impaired. Currently, drugs are administered to dissolve the thrombus that blocks the blood vessel. These drugs spread throughout the entire [...]
Reviving Exhausted T Cells Sparks Powerful Cancer Tumor Elimination
Scientists have discovered how tumors secretly drain the energy from T cells—the immune system’s main cancer fighters—and how blocking that process can bring them back to life. The team found that cancer cells use [...]
Very low LDL-cholesterol correlates to fewer heart problems after stroke
Brigham and Women's Hospital's TIMI Study Group reports that in patients with prior ischemic stroke, very low achieved LDL-cholesterol correlated with fewer major adverse cardiovascular events and fewer recurrent strokes, without an apparent increase [...]
“Great Unified Microscope” Reveals Hidden Micro and Nano Worlds Inside Living Cells
University of Tokyo researchers have created a powerful new microscope that captures both forward- and back-scattered light at once, letting scientists see everything from large cell structures to tiny nanoscale particles in a single shot. Researchers [...]
Breakthrough Alzheimer’s Drug Has a Hidden Problem
Researchers in Japan found that although the Alzheimer’s drug lecanemab successfully removes amyloid plaques from the brain, it does not restore the brain’s waste-clearing system within the first few months of treatment. The study suggests that [...]















